Experience with a Prototype
Intel® MIC System

Hamid Oloso amidu.o.oloso@nasa.gov

Kaushik Datta kaushik.datta@nasa.gov

Outline

e What s Intel’s MIC Platform?

Intel MIC Overview

e Intel MIC (Many Integrated Core)

A co-processor attached to CPU host via PCle bus
Designed for highly parallel, vectorizable codes
Uses many small, simple cores with wide vector units

Getting full performance requires both a high degree of parallelism
and vectorization

* Not all code can be written this way
* Not all programs make sense on this architecture

Prototype box named Knights Ferry (KNF) tested. Not a product. Used
it to:

* Prepare your code for the next-generation production hardware
* Validate the programming models
* Help us gather your feedback

First MIC consumer product (Knights Corner) expected 2012/2013

Outline

e MIC Hardware

Our KNF Test Node

e 12 Xeon CPU cores (Westmere @ 3.33 GHz)

e 2 MIC co-processors (over PCle) each with:
— 30 active cores

— High-BW bidirectional ring connecting cores (for
cache coherency)

— 2GB GDDR5 memory (graphics memory)

— Only 1 MIC co-processor used in our testing

KNF MIC Core

4 hardware threads

Two pipelines

— Pentium® processor-based scalar units
— 64-bit addressing

64 KB L1 cache and 256 KB L2 cache
— Both are fully coherent

All new vector unit
— 512-bit SIMD instructions - not Intel® SSE, MMX™, or Intel® AVX

— 32 512-bit wide vector registers

* Hold 16 singles or 8 doubles per register
* DPis currently much slower than SP

Intel® MIC is not an Intel® Xeon® processor

— It specializes in running highly parallel and vectorized code.
— Not optimized for processing serial code

Outline

* MIC Programming Models

Programming Models

. offload symmetric reverse offload native MIC
(Xeon)

Xeon Program foo Program foo Program foo
call bar call bar call bar
End program End program End program

MIC bar Program foo Program foo Program foo
call bar call bar call bar
End program End program End program

* We only tested offload and native modes
e Used OpenMP + MIC directives for parallelization
 MPI should also be supported, but have not tested it

Outline

* MIC Programming Models
— Offload Mode

Offload Mode Basics

Need to specify what gets offloaded to MIC card:
1. Data: 'dir$ omp offload target(mic:0) in(a) inout(b)
2. Subroutines: 'dir$ attributes offload:mic :: matmult
Offload directives must be followed by OpenMP parallel region
— Distributes work over MIC cores

Code compilation:
— Requires special offload flags
e -opt-subscript-in-range -align all -offload-build -openmp -03
— Generates report to show whether offloaded code is vectorized
e -vec-report3 -opt-subscript-in-range -align all -offload-build -openmp -03
Code execution:
— Can control MIC parallelization via OMP_NUM THREADS
— Can control MIC affinity via KMP_AFFINITY
— Can run MKL library calls on the MIC (as we will see...)

Intel® Math Kernel Library Use in Offload Code

* Native execution (of course)

* |dentical usage syntax on host and coprocessor

* Functions called from the host execute on the host, functions called from the
coprocessor execute on coprocessor

— User is responsible for data transfer and execution management between

the two domains

Host

Hetero App

Host optimized

Intel® MKL

Intel® MIC

Native code

<Offloaded
code>

Intel® MIC

suppirt stack

MIC optimized
Intel® MKL

Intel® Math Kernel Library Automatic Offload

e Transparent load balancing between host and coprocessors
e |nitiated by callingmkl mic enable () on the host before calling Intel® MKL
functions that implemeﬁt Automatic Offload
 Call the function from the host code
— No “_Offload” or “#pragma offload” needed
— Intel® MKL is responsible for data transfer and execution management

Host Side Intel® MIC Side

Host Optimized

Intel® MKL User’s App

Intel® MIC

optimized
Intel® MKL

Transparent load
balancing

Offload Mode Caveats

* Overheads:
1. Connecting to the MIC card for the first time
2. Copying in data for an offload region
3. Copying out data for an offload region

* Parallel regions in offload mode may run
slower than in native mode

Offload Mode Issues

e Currently cannot persist automatic arrays on
the stack across offload regions

— Even though array a is local to subroutine bar, it
still needs to be “copied in”:

program foo
! array a now global (heap)

program foo real, allocatable, dimension(:) ::

call bar(sizel) allocate(a(sizel))

end program call bar(sizel, a)
)) end program
subroutine bar(sizel)

! local (automatic) array a subroutine bar(sizel, a)
real, dimension(sizel) :: a(:)
end subroutine bar

! array a turned into dummy var
real, dimension(sizel) :: a(:)
end subroutine bar

— Solution: Restructure code to move local arrays
inside layers of subroutines to the heap

* |Intel is aware of this issue and is addressing it
for the next software releases

MIC Offload vs. PGI Accelerator Model
(Similarities)

* Both approaches only require additional directives and
possibly some code transformations

— No large-scale code refactoring/rewriting

Intel MIC offload keywords | PGl ACC data region keywords

in copyin
out copyout
inout copy
nocopy local

* Both compilers report:
— what data is being moved in and out of each offload region
— which loops have been successfully vectorized/parallelized

MIC Offload vs. PGI Accelerator Model

(Differences)

Persisting data across offload regions:

— MIC: user must specify which vars need to be retained for the next offload
region

— PGI ACC: user needs to create an encompassing “data region” to persist data
across individual “compute regions”

Subroutine calls within offload regions:
— MIC: allowed
— PGI ACC: allowed within data regions, but not within compute regions

Running on the co-processor:
— MIC: offload code will still run (slowly) even if it does not vectorize/parallelize

— PGI ACC: will refuse to generate GPU kernels unless:
* |oop carried dependencies are removed
* certain arrays are declared private
* no live variables after parallel loops
* etc.

Generally, since MIC card is also x86, there is less tuning than for PGl ACC
running on GPUs

— PGI ACC may require larger code transformations to expose lots of fine-
grained parallelism

Outline

* MIC Programming Models

— Native Mode

Native Mode Basics

Everything runs on the MIC card
— no need for offload directives
— codes with large serial regions will suffer

OpenMP parallel regions will parallelize over MIC cores

Code compilation:
— can build as is without any code changes
— requires special native mode flags
e -opt-subscript-in-range -align all -mmic -openmp -03
— generates report to show whether offloaded code is vectorized or not

Can use OMP_NUM_THREADS, KMP_AFFINITY, and MKL
libraries (just like offload mode)

Code execution:
1. use ssh to remotely launch a native executable on MIC card, or:
2. ssh to MIC card, copy the executable over from host, and run natively

Outline

e MIC SGEMM Performance

MIC SGEMM Performance

% of HW peak
(Oa]
o

SGEMM
30

O D O O X 0 AP QO OV (X A0 O O O A% L0
7 A% AT AV AQT oY AV o 97 07 AT Y QN VD
VAT PP S F P E S @

N

* Code was run natively on single MIC card
e Attains up to 68% of hardware peak

Outline

* FV 2D Advection Code
— Experience Porting to MIC

OpenMP Parallelization

Original code parallelized with OpenMP

program foo
program foo real, dimension(:,:), allocatable a
real, dimension(:,:), allocatable a allocate a(sizel,size2)
allocate a(sizel,size2) do iter = 1, numTimeSteps
call bar(a, sizel, size2)

Original code

do iter = 1, numTimeSteps
call bar(a, sizel, size2) enddo
enddo OpenMP end program foo
end program foo “parallel do”
] . module bar
module bar directives allow contains
contains subroutine bar(a, sizel, size2)
subroutine bar(a, sizel, size2) doloopstoloe real, dimension(sizel,size2) :: a
real, dimension(sizel,size2) :: a parallelized ! local
! local real, dimension(sizel,size2) :: b
real, dimension(sizel,size2) :: b | t> !$omp parallel do
some_parallel_work some_parallel_work
call barl(b, sizel, size2) call barl(b, sizel, size2)
more_parallel_work !$omp parallel do
more_calls more_parallel_work
etc Each “parallel more_calls
end subroutine bar »” . etc
do” region can end subroutine bar
subroutine barl(b, sizel, size2)
real, dimension(sizel,size2) :: b also become a subroutine barl(b, sizel, size2)
I local MIC offload fe%l, ?1mension(sizel,size2) 20 [y
real, dimension(sizel,size2) :: c ; ; ¢ loca
some_parallel_work region (with real, dimension(sizel,size2) :: ¢
calls_to_other_inner_subroutines appropriate !$omp parallel do
more parallel work di . some_parallel_work
etc. irectives) calls _to other inner_subroutines
end subroutine barl !$omp parallel do
etc. more_parallel_work
end module bar etc.
end subroutine barl
etc.

end module bar

Advection Code on the MIC

(Offload Mode)

Original code parallelized with OpenMP . could MIC code
program foo offload each program foo
real, dimension(:,:), allocatable a “parallel real, dimension(:,:), allocatable a, b, c
allocate a(sizel,size2) do” region !dir$ attributes offload : mic :: a, b, c
do iter = 1, numT1meSteps allocate a(sizel,size?)
call bar(a, sizel, size2) to the MIC, allocate b(sizel,size2)
enddo but local allocate c(sizel,size2)
end program foo arravs would
y i Idir$ offload target(mic:0) in(b, c) inout(a)
module bar not persist !$omp parallel
contains _ . do iter = 1, numTimeSteps
subroutine bar(a, sizel, size2) call bar(a, b, c, sizel, size2)
real, dimension(sizel,size2) :: a enddo
' local . _ _ '$omp end parallel
real, dimension(sizel,size2) :: b end program foo
!$omp parallel do
some_parallel_work module bar
call barl(b, sizel, size2) contains
!'$omp parallel do subroutine bar(a, b, c, sizel, size2)
more_parallel_work real, dimension(sizel,size2) :: a, b, c
more_calls As a result, '$omp do
etc ' we move some_parallel_work
end subroutine bar local arrays $gll bgrl(b, c, sizel, size2)
!'$omp do
subroutine barl(b, sizel, size2) to the top- morepparallel work
real, dimension(sizel,size2) :: b most caller more calls -
! local brouti etc
real, dimension(sizel,size2) :: c subrouting, end subroutine bar
!$omp parallel do and then
some_parallel_work , create a subroutine barl(b, c, sizel, size2)
calls_to other _inner_subroutines inol real, dimension(sizel,size2) :: b, c
!$omp parallel do Single '$omp do
more_parallel _work parallel some_parallel_work
etc. . offload calls_to_other_inner_subroutines
end subroutine barl . !$omp do
etc. region more_parallel work
end module bar etc.” -
end subroutine barl
etc.

end module bar

Advection Code on the MIC

(Steps Taken for Offload Mode)

Code reorganized to put automatic variables (b, c)
on the heap and pass them as arguments

Code restructured to have only single “omp
parallel” at highest level

— Allows MIC data to be copied only once

MIC directives then added above “omp
parallel” directive to offload work and data

For OpenMP performance:

— Environmental variable KMP_AFFINITY should be set
to "granularity=thread,scatter"

Outline

e FV 2D Advection Code

— Performance

2D Advection Code Performance

35

30

==Speed-Up (offload)

=#-Speed-Up (native)

0 25

50 75

Number of Threads

100

125

» Speed-up basically flattens
out at a maximum of:

* about 28 at 50 threads for “offload”
* about 30 at 60 (and 100) threads for
“native”
* Not shown but observed:

* “native” about 30% faster than
“offload”

* Cost of spawning threads grows with
number of threads in “native” mode
but remains constant in “offload”
mode

Outline

 Conclusion

Conclusions

* Once automatic variables persist on the MIC, we
expect porting of parallel codes to be quicker than for
GPUs (typically within days)

— Similar programming and environment between CPUs and
MIC

— “Offload” mode might only require addition of offload
directives

— “Native” mode might not require any code changes
— Maintain a single code base?
— Generating GPU kernels using PGl ACC still not easy

* Have yet to see how Knights Corner performance
compares to latest GPUs

