
Intel Fortran Compiler 11.0

Agenda

Fortran 2003 features

Other language features

New and changed behaviors

11.0 Features from Fortran 2003

•  Enumerators

•  Type extension (not polymorphic)

• Allocatable scalars (not deferred-length character)

•  ERRMSG keyword for ALLOCATE and DEALLOCATE

• SOURCE= keyword for ALLOCATE

• MAX/MIN/MAXVAL/MINVAL/MAXLOC/MINLOC with
CHARACTER arguments

•  Intrinsic modules IEEE_EXCEPTIONS,
IEEE_ARITHMETIC and IEEE_FEATURES

• ASSOCIATE construct

11.0 F2003 Features contd.

•  PROCEDURE declaration

•  Procedure pointers

• ABSTRACT INTERFACE

•  PASS and NOPASS attributes

• Structure constructors with component names and
default initialization

• Array constructors with type and character length
specifications

• BLANK, DELIM, ENCODING, IOMSG, PAD, ROUND,
SIGN I/O keywords

• DC, DP, RD, RC, RN, RP, RU, RZ format edit
descriptors

Enumerators

Another way to define named integer constants

ENUM, BIND(C)

 ENUMERATOR GREEN

 ENUMERATOR :: RED = 4, BLUE = 9

 ENUMERATOR YELLOW

END ENUM

GREEN is 0, YELLOW is 10

Exactly as if PARAMETER was used

Integer kind is same as C_INT (4)

Interoperable with C enumerators

:: required if value specified

Type Extension

Define a type that adds components to a “base type”

The base type must be “extensible”

•  Not a SEQUENCE type

•  Not a BIND type

Extended type inherits all components of its base type

Base type can be host- or use-associated

Extended type can itself be extended

Base type becomes itself a component of extended type

Type Extension

TYPE POINT

 REAL :: X, Y

END TYPE POINT

TYPE, EXTENDS(POINT) :: COLOR_POINT

 ! X and Y and component name POINT inherited

 INTEGER :: COLOR

END TYPE COLOR_POINT

TYPE(COLOR_POINT) :: CP

CP%X, CP%Y, CP%COLOR defined

CP%POINT, CP%POINT%X, CP%POINT%Y also defined!

Allocatable Scalars

Scalar (non-array) variables can be ALLOCATABLE

integer, allocatable :: i

type mytype

 real :: a = 3.14

 real :: b = 2.17

end type mytype

type(mytype), allocatable :: r

allocate (i)

allocate (r)

Deferred-length character not yet supported

CHARACTER(LEN=:) FOO; ALLOCATE(CHARACTER(20)::FOO)

ERRMSG for ALLOCATE/DEALLOCATE

New ERRMSG keyword for ALLOCATE and DEALLOCATE

CHARACTER variable assigned implementation-defined message if
error

allocate (x(5), stat=stat, errmsg=message)

print *, stat, trim(message)

…

 151 allocatable array is already allocated

ALLOCATE (SOURCE=)

ALLOCATE (Y(10), SOURCE=X)

In F2003, X must be “conformable” with Y (same shape or a scalar)

After allocation, Y is assigned value of X

Gets dynamic type of X, but dynamic types not yet implemented

F2008 (draft) removes “conformable” restriction and says Y is
allocated with shape of X (bounds for X omitted and ranks must
match)

We implement F2008 behavior

MAX/MIN/MAXVAL/MINVAL/MAXLOC/MINLOC
with CHARACTER arguments

In F95, these were limited to numeric types

character(1) :: arr(7) = ['f','o','r','t','r','a','n']

print *, min('bcd','abdf','hhhh')

print *, minloc(arr)

print *, maxval(arr)

…

 abdf

 6

 t

IEEE Intrinsic Modules

Provides information about and some control of the IEEE floating point
environment

Defines derived types, constants, procedures and operators

Intrinsic modules IEEE_EXCEPTIONS, IEEE_ARITHMETIC,
IEEE_FEATURES

IEEE_ARITHMETIC uses IEEE_EXCEPTIONS

If IEEE_EXCEPTIONS or IEEE_ARITHMETIC visible then
IEEE_OVERFLOW and IEEE_DIVIDE_BY_ZERO are supported

IEEE_EXCEPTIONS

IEEE_FLAG_TYPE derived type for exceptions

IEEE_STATUS_TYPE derived type for status values

Exception values IEEE_INVALID, IEEE_OVERFLOW,
IEEE_DIVIDE_BY_ZERO, IEEE_INEXACT

IEEE_USUAL array of OVERFLOW, DIVIDE_BY_ZERO, INVALID

IEEE_ALL array of all exceptions

Procedures to get and set flags, status, halting mode, support

IEEE_ARITHMETIC

IEEE_CLASS_TYPE to identify what class a value is (denorm, infinity,
NaN, etc.)

IEEE_ROUND_TYPE to identify a rounding mode

Support inquiry functions for IEEE datatypes, denorms, divide, infinity,
NaN, rounding, formatting, square root, underflow

Elemental functions class, copy sign, is finite, is NaN, is normal, round
to integer and more

Get and set routines for flags and modes

== and /= operators for the derived types (in case you want to
compare)

IEEE_FEATURES

Defines “features” that you want supported

•  IEEE_DATATYPE, IEEE_DENORMAL, IEEE_DIVIDE, IEEE_HALTING,
IEEE_INEXACT, IEEE_INEXACT_FLAG, IEEE_INF,
IEEE_INVALID_FLAG, IEEE_NAN, IEEE_ROUNDING, IEEE_SQRT,
IEEE_UNDERFLOW_FLAG

USE, INTRINSIC :: IEEE_FEATURES, &
 ONLY: IEEE_INVALID_FLAG, IEEE_HALTING

Behavior is implementation-dependent if IEEE_FEATURES not visible

Portable equivalent of switches such as -fpe

USE, INTRINSIC :: IEEE_EXCEPTIONS
USE, INTRINSIC :: IEEE_FEATURES, ONLY: IEEE_INVALID_FLAG
! The other exceptions of IEEE_USUAL (IEEE_OVERFLOW and
! IEEE_DIVIDE_BY_ZERO) are always available with IEEE_EXCEPTIONS
TYPE(IEEE_STATUS_TYPE) STATUS_VALUE
LOGICAL, DIMENSION(3) :: FLAG_VALUE
...
CALL IEEE_GET_STATUS(STATUS_VALUE)
CALL IEEE_SET_HALTING_MODE(IEEE_USUAL,.FALSE.) ! Needed in case the
! default on the processor is to halt on exceptions
CALL IEEE_SET_FLAG(IEEE_USUAL,.FALSE.)
! First try the "fast" algorithm for inverting a matrix:
MATRIX1 = FAST_INV(MATRIX) ! This shall not alter MATRIX.
CALL IEEE_GET_FLAG(IEEE_USUAL,FLAG_VALUE)
IF (ANY(FLAG_VALUE)) THEN
! "Fast" algorithm failed; try "slow" one:
 CALL IEEE_SET_FLAG(IEEE_USUAL,.FALSE.)
 MATRIX1 = SLOW_INV(MATRIX)
 CALL IEEE_GET_FLAG(IEEE_USUAL,FLAG_VALUE)
 IF (ANY(FLAG_VALUE)) THEN
 WRITE (*, *) ’Cannot invert matrix’
 STOP
 END IF
 END IF
CALL IEEE_SET_STATUS(STATUS_VALUE)

Example of using IEEE modules

ASSOCIATE Construct

Associates a name with a variable or expression in a section of a
program

ASSOCIATE (Z => EXP(-X**2+Y**2))*COS(THETA))

 PRINT *, A+Z, A-Z

 END ASSOCIATE

Not a macro nor like a statement function

ASSOCIATE (XC => A%B(I,J)%C)

 XC%DV = XC%DV + PRODUCT(XC%EV(1:N))

 END ASSOCIATE

ASSOCIATE (ARRAY => AX%B(I,:)%C)

 ARRAY(N)%EV = ARRAY(N-1)%EV

 END ASSOCIATE

Array bounds are LBOUND:LBOUND+SIZE-1

PROCEDURE

procedure () :: foo

•  foo is either a function or subroutine

•  parentheses required
procedure(real) :: foo2

•  foo2 is a function that returns a REAL value
procedure(sqrt) :: foo3

•  foo3 has the same interface as intrinsic SQRT
procedure(somefunc) :: foo4

•  foo4 has the same interface as somefunc, which
can be EXTERNAL, or have an explicit interface

PROCEDUREs always have the EXTERNAL attribute

PROCEDURE (2)

subroutine somesub (procarg)

procedure(integer), optional :: procarg

•  procarg is an optional procedure argument
procedure(someint), bind(C,NAME=“JoJo”) :: &
billy

•  billy is a procedure with the same interface as
“someint” and is interoperable with C with an
external name of “JoJo”

Procedure Pointers

procedure(someint), pointer :: pp => null()

pp => AnotherProc

call pp(3.14)

Procedure pointers can have SAVE attribute if locals, INTENT if dummy
argument

Target of procedure pointer assignment must have matching interface

ABSTRACT INTERFACE

A way to declare an interface without it corresponding to an external
procedure

abstract interface
integer function fuzzy (x)
real x
end function fuzzy

end interface

procedure(fuzzy), pointer :: dice

Procedure Pointer Components

A procedure pointer can be a component of a derived type

type mytype

procedure(someint), pointer :: p => null()

real :: r

end type mytype

When procedure pointer component p is called, an extra argument is
passed with the derived type value for context (default is as first
argument)

PASS, NOPASS

Control of passing context in call to procedure pointer

Use only for component of derived type

TYPE MYTYPE
INTEGER CONTEXT
PROCEDURE(INT1),PASS,POINTER :: A
PROCEDURE(INT2),NOPASS,POINTER :: B
PROCEDURE(INT3),PASS(ARG),POINTER :: C

END TYPE MYTYPE

•  Call through A passes extra first argument of type MYTYPE
(default)

•  Call through B does not pass extra argument

•  Call through C passes type(MYTYPE) through argument ARG

Putting it together (1)
module mymod

type mytype

integer i

procedure (foobar), pointer, pass :: bar

end type mytype

abstract interface

 subroutine foobar (a,b)

 import

 type(mytype) :: a

 integer b

 end subroutine foobar

end interface

Putting it together (2)
contains

subroutine modfoobar (a,b)

type(mytype) :: a

integer b

print *, a%i, b

return

end subroutine modfoobar

end module mymod

subroutine myfoobar (a,b)

use mymod

type(mytype) :: a

integer b

print *, a%i, 2*b

return

end subroutine myfoobar

Putting it together (3)

program pass

use mymod

type (mytype) :: r

procedure(foobar) :: myfoobar

r%i = 314

r%bar => modfoobar

call r%bar(5)

r%bar => myfoobar

call r%bar(6)

end program pass

Putting it together (4)

Running the program gives:

 314 5

 314 12

C Interop and Procedure Pointers

Derived type C_FUNPTR interoperable with C function pointer type

Function C_FUNLOC(X) returns type C_FUNPTR with pointer to
procedure X

•  X must be an interoperable procedure or procedure pointer

Subroutine C_F_PROCPTR(CPTR,FPTR) associates Fortran procedure
pointer FPTR with the target of C function pointer CPTR (type
C_FUNPTR)

Structure Constructor Enhancements

Old way – structure constructor was just a list of values and had to
name all elements

•  mytype(1,2,3)

New way – can use component name keywords and can omit values
that have default initialization

type mytype
integer a,b
real :: c = 0.0
end type mytype

…

r = mytype(4,b=5) ! c is defaulted

Array constructor enhancements

Can now use type specification, including character length

•  (/INTEGER(8) :: 1,2,3/)
•  [CHARACTER(LEN=7) :: 'Red','Green','Blue','Orange']
In F95, value character lengths must all be the same (though we
supported differing lengths)

If intrinsic type specified, all values must be conformable to the type

If derived type specified, all values must be of that type

Note square bracket syntax, which is newly standard in F2003, though
we’ve supported it “forever”

New I/O Keywords

BLANK, DELIM, PAD, ROUND, SIGN temporarily override OPEN
specifiers in I/O control lists

ROUND=UP,DOWN,ZERO,NEAREST,COMPATIBLE,
PROCESSOR_DEFINED in OPEN,INQUIRE,I/O control list

ENCODING=UTF-8, DEFAULT on OPEN (only DEFAULT supported)

SIGN=PLUS,SUPPRESS,PROCESSOR_DEFINED

IOMSG for all I/O statements

SIZE= on INQUIRE returns size of file in “storage units” (always bytes)

•  Unit must be opened, otherwise -1 returned

New FORMAT edit descriptors

DC Decimal Comma

DP Decimal Period

RD Round Down

RC Round Compatible

RN Round Nearest

RP Round Processor-Defined

RU Round Up

RZ Round towards Zero

Still to come

Full object-oriented features including CLASS, dynamic types, finalizers

Type-bound procedures

PUBLIC types with PRIVATE components and PRIVATE types with
PUBLIC components

Parameterized derived types

User-defined derived type I/O

Support for international character sets

Non F2003 Features in 11.0

OpenMP 3.0

•  !$OMP TASK – create an asynchronous task

•  !$OMP TASKWAIT – wait for an asynchronous task

•  Nested parallelism

•  SCHEDULE AUTO and OMP_SCHEDULE environment variable

UNROLL_AND_JAM and NOUNROLL_AND_JAM directives

•  Similar to UNROLL

VECTOR NONTEMPORAL can name variables

VECTOR TEMPORAL (prevent optimizer from setting VECTOR
NONTEMPORAL)

Other Changes

ifortvars.bat now takes arguments (ia32, intel64, ia32_intel64,
ia32_ia64, ia64)

Visual Studio projects must be converted to 11.0 format

SSE2 now default on IA-32

Lots of new optimization switches

IMSL refreshed, but not new version

VS08 Shell replacing VSPPE deferred to EMHE

idb gone on Windows

fpp is documented

More to Explore

Fortran 2003 Standard:
http://ssgsites.sc.intel.com/sites/SSG-SPD-ICL/support/Shared
%20Documents/Fortran%202003%20Standard.pdf

The New Features of Fortran 2003

http://www.fortranplus.co.uk/resources/john_reid_new_2003.pdf

New Features for Intel Fortran in 11.1

Arriving June 2009

Summary of new features

• Fortran 2003 features

• Miscellaneous improvements

• Correction of a >30-year old mistake

• Visual Studio 2008 Shell replaces VSPPE

5/11/09 Intel Fortran 11.1 new Features 39

F2003: CLASS declaration

• CLASS is a variant of TYPE that can match a type and any extension
of that type

• Valid for pointer, allocatable and dummy argument only

TYPE :: point
 REAL :: x
 REAL :: y
END TYPE point
TYPE, EXTENDS(point) :: point_3D ! In 11.0
 REAL :: z
END TYPE point_3D

TYPE(point) :: p1 ! Matches only point
CLASS(point) :: p2 ! Matches point and point_3D

5/11/09 40 Intel Fortran 11.1 new Features

CLASS (contd.)
• Type of object declared with CLASS is “declared type”

• Type of actual object associated is “dynamic type”

• Object declared with CLASS is “polymorphic”; can have more than one
type

•  Restriction: You can access components of the declared type only,
not any extended type (but see SELECT TYPE later)

• CLASS(*) is “unlimited polymorphic” – matches any derived type

•  Cannot access any components without SELECT TYPE

•  Can ALLOCATE with desired type:
•  ALLOCATE(TYPE(FOO) :: P)

• EXTENDS_TYPE_OF(A,B) – logical, is dynamic type of A an extension
of the dynamic type of B?

• SAME_TYPE_AS(A,B) – logical, is dynamic type of A the same as that
of B?

5/11/09 Intel Fortran 11.1 new Features 41

F2003: SELECT TYPE

• Like SELECT CASE for dynamic type

• Within the CLASS_IS or TYPE_IS block can access components of that
type/class

SELECT TYPE (A => P_OR_C)
CLASS IS (POINT)
! "CLASS (POINT) :: A" implied here
PRINT *, A%X, A%Y
TYPE IS (POINT_3D)
! "TYPE (POINT_3D) :: A" implied here
PRINT *, A%X, A%Y, A%Z
CLASS DEFAULT
! Something else
END SELECT

5/11/09 Intel Fortran 11.1 new Features 42

F2003: Type-bound procedures

• Create methods for objects of a type or class

TYPE POINT
REAL :: X, Y
CONTAINS
PROCEDURE, PASS :: LENGTH => POINT_LENGTH
END TYPE POINT
TYPE(POINT) :: P,Q

CONTAINS

REAL FUNCTION POINT_LENGTH (THIS, B)
CLASS (POINT), INTENT (IN) :: THIS, B
POINT_LENGTH = SQRT ((THIS%X - B%X)**2 + (THIS%Y - B%Y)**2)
END FUNCTION POINT_LENGTH

• Call with P%LENGTH(Q)

5/11/09 Intel Fortran 11.1 new Features 43

Type-Bound Procedures (contd.)

• Type-bound procedure can also be GENERIC – not supported in 11.1

• No concept of “constructor” – do it yourself

• FINAL subroutines (“finalizer”) not supported in 11.1

5/11/09 Intel Fortran 11.1 new Features 44

F2003: Overriding

TYPE POINT
REAL :: X, Y
CONTAINS
PROCEDURE, PASS :: LENGTH => POINT_LENGTH
END TYPE POINT

TYPE, EXTENDS(POINT) :: POINT_3D
REAL :: Z
CONTAINS
PROCEDURE, PASS :: LENGTH => POINT3D_LENGTH ! Overrides
END TYPE POINT_3D

• NON_OVERRIDABLE keyword disables overriding

• Rules similar to generics for compatibility

5/11/09 Intel Fortran 11.1 new Features 45

F2003: Abstract Type

An abstract type is a type which must be extended to be usable

TYPE, ABSTRACT :: DRAWABLE_OBJECT
REAL, DIMENSION(3) :: RGB_COLOR=(/1.0,1.0,1.0/) ! White
REAL, DIMENSION(2) :: POSITION=(/0.0,0.0/) ! Centroid
CONTAINS
PROCEDURE(RENDER_X), PASS(OBJECT), DEFERRED :: RENDER
END TYPE DRAWABLE_OBJECT

ABSTRACT INTERFACE ! In 11.0
SUBROUTINE RENDER_X(OBJECT, WINDOW)
CLASS(DRAWABLE_OBJECT), INTENT(IN) :: OBJECT
CLASS(X_WINDOW), INTENT(INOUT) :: WINDOW
END SUBROUTINE RENDER_X
END INTERFACE

5/11/09 Intel Fortran 11.1 new Features 46

Abstract Type (contd.)

TYPE, EXTENDS(DRAWABLE_OBJECT) :: &
 DRAWABLE_TRIANGLE ! Not ABSTRACT
REAL, DIMENSION(2,3) :: VERTICES
CONTAINS
PROCEDURE, PASS(OBJECT) :: RENDER=>RENDER_TRIANGLE_X
END TYPE DRAWABLE_TRIANGLE

• Abstract types and interfaces are patterns

5/11/09 Intel Fortran 11.1 new Features 47

F2003: Deferred-length Character

• Special case of allocatable scalar, not in 11.0

• Finally – variable-length character strings come to Fortran!

CHARACTER(:), ALLOCATABLE :: C
ALLOCATE (CHARACTER(20) :: C)
PRINT *, LEN(C) ! Prints 20

5/11/09 Intel Fortran 11.1 new Features 48

F2003: Selective accessibility of
components

• Ability to declare PUBLIC types with PRIVATE components or vice-
versa

TYPE, PUBLIC :: FOO
INTEGER :: A ! Public
PRIVATE ! Everything after this default PRIVATE
REAL :: B ! Private
COMPLEX, PUBLIC :: C ! Public
END TYPE FOO

5/11/09 Intel Fortran 11.1 new Features 49

F2003: Miscellaneous

• NAMELIST I/O allowed on internal file (character variable)

• Automatic array allowed in a NAMELIST group

• MAXLOC/MINLOC return zero for zero-size array

•  Requires option /assume:noold_maxminloc to be set

•  Performance will suffer – default is that result is implementation-
dependent (F95 definition)

• COUNT_RATE argument to SYSTEM_CLOCK may be REAL

5/11/09 Intel Fortran 11.1 new Features 50

F2003 with 11.1: What’s Missing?

• FINAL and GENERIC type-bound procedures

• User-defined derived type I/O

• Parameterized derived types

Fortran 2003 References:

•  http://www.fortranplus.co.uk/resources/john_reid_new_2003.pdf

•  http://j3-fortran.org/doc/2003_Committee_Draft/04-007.pdf

5/11/09 Intel® Fortran 11.1 New Features 51

Non-F2003 changes

• When bounds checking is on, length of passed character argument
used for checking if less than declared length

• LOGICAL input values (T, F, .TRUE., .FALSE.) no longer accepted for
list-directed and NAMELIST input of non-LOGICAL values

•  Corrects mistake made by DEC over 30 years ago

•  Old behavior enabled with /assume:old_logical_ldio

• /fpe-all for per-compilation control of floating point exception
environment (instead of main program only)

• Windows: New static library ifmodintr.lib contains constants and
routines from intrinsic modules

•  Fixes problem where C_NULL_PTR, etc., have wrong values when
DLL linked. Not needed on Linux/Mac

5/11/09 Intel Fortran 11.1 new Features 52

Visual Studio 2008 Shell

• New VS environment for standalone Windows Fortran

• Replaces Visual Studio 2005 Premier Partner Edition (VSPPE)

• VSPPE not recognized by 11.1 integration – will install VS08 shell if no
other supported VS

•  If VSPPE and VS03 or VS08 are installed, 11.1 upgrade will remove
integration from VSPPE – can be replaced with custom install

• No significant difference in appearance or usage – same limitations
apply:

•  No resource editor

•  No conversion of CVF projects

5/11/09 Intel Fortran 11.1 new Features 53

