
NCCS Brown
Bag Series

Programming on the Intel MIC
(Many Integrated Core) Architecture:
Part 2 - How to run MPI applications

Chongxun (Doris) Pan
doris.pan@nasa.gov

June 13, 2013

Agenda of the previous MIC talk (Part 1)

!   Discover SCU8 augmentation
!   What is MIC?
!   MIC Programming Considerations
!   Offload vs. Native
!   Demo

http://www.nccs.nasa.gov/list_brown_bags.html
Click “An introduction to MIC programming models”

3

Today’s Agenda – MIC Talk Part 2

!   First -- a few words about running jobs on the Sandy
Bridge nodes

!   Intel MPI on MIC
!   MPI+Offload Model
!   Native Model
!   Symmetric Model

!   User Environment Variables
!   General Performance Guidelines
!   Demo

4

Discover SCU8/9 Sandy Bridge Nodes

!   The SNB processor family features -
Intel Advanced Vector eXtensions
!   AVX is a 256-bit instruction set extension
!   SSE (Streaming 128-bit SIMD Extensions) on Westmere

processors
!   While MIC has 512-bit instructions (hence higher peak

FLOPS with better power efficiency)
!   Some SNB nodes are available in the “general” queue
!   To request SNB nodes:
#PBS –l select=N:ncpus=16:mpiprocs=m (recommeded)
Or
#PBS –l select=N:ncpus=12:mpiprocs=m:proc=sand

5

Discover SCU8 “Sandy Bridge” User Changes

!   Compiler flags to take advantage of Intel AVX (for Intel
compilers 11.1 and up ONLY)
-xavx:
!  Generate an optimized executable that runs on the Sandy

Bridge processors ONLY
-axavx –xsse4.2:
!  Generate an executable that runs on any SSE4.2

compatible processors but with additional specialized code
path optimized for AVX compatible processors (i.e., run on
all Discover processors)

!  Application performance is affected slightly compared to
with “-xavx” due to the run-time checks needed to
determine which code path to use

6

Spectrum of Programming Models

7

Intel MPI Support for Xeon Phi Coprocessors

!   Three Programming Models:
!   Using MPI and Offload together
!   MPI ranks on Xeon only

!   Native
!   MPI ranks on Xeon Phi only

!   Symmetric
!   MPI ranks on both Xeon and Xeon Phi

8

MPI+Offload

Native Symmetric

Prerequisites on Discover

!   Have to use Intel 13 compiler and Intel MPI 4.1, e.g.
module load comp/intel-13.1.2.183
module load mpi/impi-4.1.0.024-test

!   MPI libraries accessible also from Phi
!   /usr/local/intel/mpi/4.1.0.024/intel64/{bin,etc,include,lib}
!   /usr/local/intel/mpi/4.1.0.024/mic/{bin,etc,include,lib}

!   Set the Intel MPI environment
source /opt/intel/impi/4.1.0.024/intel64/bin/mpivars.sh

!   Only one user environment setup required for $PATH
and $LD_LIBRARY_PATH, serves both architectures
setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:/opt/intel/mic/

coi/host-linux-release/lib:/usr/local/intel/mpi/4.1.0.024/mic/lib:/usr/
local/intel/Composer/composer_xe_2013.4.183/compiler/lib/mic

setenv PATH ${PATH}:/opt/intel/mic/bin

9

Refer to /home/cpan2/.login_scu8

NFS Mounting on Host and MIC

10

/discover/
home/$USER

/mnt/micfs/discover/
home/$USER

•  NFS File Mounts configured on the MIC cards. It is useful for handling input/output of
large data sets.
• There is no permanent file system on the cards. Files you copied to non-NFS
mounted directories on the cards will be cleaned up once you exit the PBS job.

MPI + Offload

!   All MPI communications occur between Xeons only

!   Offload used to accelerate MPI ranks. Programmers
designates (OpenMP, pthreads, TBB, or Cilk Plus) code
sessions to run on Phi using offload directives.

!   Calling MPI functions within an offload region is NOT
allowed

!   No direct file system access needed on Xeon Phi

11

MPI Offload – How to Compile and Run

!   Compile the code with offload directives
!   The same as with MPI-OpenMP hybrid applications
!   offload build is the default compiler option with Intel13 compiler
mpiifort –openmp test.f –o test.offload
To request explicitly no offloading:
mpiifort –openmp –no-offload test.f –o test.nooffload

!   Launch your application:
mpiexec.hydra -f $PBS_NODEFILE -perhost 1 -np 2 ./test.offload

12

“mpirun” is usually a script written to integrate with the PBS. For
module mpi/impi-4.1.0.024-test, we have not created the “mpirun”
script. Simply use mpiexec.hydra instead.

MPI Offload in a Script Example

13

#! /usr/bin/csh

xsub -I -V -l select=2:ncpus=16,walltime=1:00:00 -q test
module purge
module load comp/intel-13.1.2.183
module load mpi/impi-4.1.0.024-test
source /usr/local/intel/Composer/composer_xe_2013.4.183/bin compilervars.csh intel64
source /usr/local/intel/mpi/4.1.0.024/intel64/bin/mpivars.csh
setenv MIC_ENV_PREFIX MIC
setenv MIC_OMP_NUM_THREADS 236
setenv OMP_NUM_THREADS 16
setenv MIC_OMP_STACKSIZE 2M
setenv MIC_USE_2MB_BUFFERS 64K
setenv OFFLOAD_INIT on_start
setenv I_MPI_PIN_DOMAIN auto
setenv KMP_AFFINITY compact
setenv MIC_KMP_AFFINITY "granularity=thread,balanced"
setenv OFFLOAD_REPORT 2
mpiifort -openmp -align array64byte -offload-option,mic,compiler,"-O3 -vec-report3" -o test.offload
test.f90
mpiexec.hydra -f $PBS_NODEFILE -perhost 1 -np 2 ./test.offload

Avoid Offload Resource Conflicts

!   Coordinate coprocessor resource usage among the MPI
ranks. Three methods:
1.  Only running one MPI rank per host, so there is no chance of

multiple ranks offload to the same Phi coprocessor
2.  Heterogeneous: Running multiple MPI ranks per host but

arranging processors to allow only single rank offload to the same
Phi

3.  Explicit Pinning: Setting the pinning on a per-process basis to
allow control of where each thread is offloaded.

14

borg01x045 $ cat $PBS_NODEFILE
borg01x045.prv.cube
borg01x046.prv.cube
borg01x045 $ mpiexec.hydra -f $PBS_NODEFILE -perhost 2 \
 -genv MIC_OMP_NUM_THREADS 118 \
 -env MIC_KMP_AFFINITY "granularity=fine,proclist=[1-118],explicit” -n 1 ./jacobi : \
 -env MIC_KMP_AFFINITY "granularity=fine,proclist=[119-236],explicit” -n 1 ./jacobi : \
 -env MIC_KMP_AFFINITY "granularity=fine,proclist=[1-118],explicit” -n 1 ./jacobi : \
 -env MIC_KMP_AFFINITY "granularity=fine,proclist=[119-236],explicit" -n 1 ./jacobi

Create a configuration file for convenience

15

Borg01x045 $ mpiexec.hydra -f $PBS_NODEFILE -perhost 2 \
 -genv MIC_OMP_NUM_THREADS 118 \
 -env MIC_KMP_AFFINITY "granularity=fine,proclist=[1-118],explicit” -n 1 ./jacobi : \
 -env MIC_KMP_AFFINITY "granularity=fine,proclist=[119-236],explicit” -n 1 ./jacobi : \
 -env MIC_KMP_AFFINITY "granularity=fine,proclist=[1-118],explicit” -n 1 ./jacobi : \
 -env MIC_KMP_AFFINITY "granularity=fine,proclist=[119-236],explicit" -n 1 ./jacobi

Borg01x045 $ cat conf_file
-genv MIC_OMP_NUM_THREADS 118 -env MIC_KMP_AFFINITY "granularity=fine,proclist=
[1-118],explicit" -n 1 ./jacobi : -env MIC_KMP_AFFINITY "granularity=fine,proclist=
[119-236],explicit" -n 1 ./jacobi : -env MIC_KMP_AFFINITY "granularity=fine,proclist=
[1-118],explicit" -n 1 ./jacobi : -env MIC_KMP_AFFINITY "granularity=fine,proclist=
[119-236],explicit" -n 1 ./jacobi

Borg01x045 $ mpiexec.hydra –f $PBS_NODEFILE -perhost 2 –configfile conf_file

Using `\’ as line continuation is NOT supported by the configure file

Native Model -- How to Compile and Run

!   Compile the code for Phi:
mpiifort –mmic test.f –o test.mic

!   Copy the executable to the Phi, Or, make sure the
executable located in the NFS-shared directory

16

•  MPI ranks on the Phi coprocessors only
•  MPI messages into/out of the Phi
•  Threading possible

borg01x045 $ cd /mnt/micfs/discover/home/cpan2/MIC
borg01x045 $ mpiifort –mmic test.f –o test.mic
borg01x045 $ ssh borg01x045-mic0
borg01x045-mic0 $ cd /discover/home/cpan2/MIC
borg01x045-mic0 $ ls
test.mic ….

If password is asked when you ssh to the host-mic0, your key is not
set up correctly. Contact support@nccs.nasa.gov.

Two Ways to Launch Application Natively

1.  From the Phi:
!   ssh to the Phi
!   Set appropriate environment on the Phi:

export PATH=$PATH:/usr/local/intel/mpi/4.1.0.024/mic/bin
export LD_LIBRARY_PATH=/usr/local/intel/Composer/
composer_xe_2013.4.183/compiler/lib/mic
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/intel/impi/
4.1.0.024/mic/lib:/discover/home/cpan2/lib

!   Create a hostfile
cd /discover/home/cpan2/MIC; cat hostfile.mic
borg01x045-mic0
borg01x046-mic0
!   Run

mpiexec.hydra –f hostfile –perhost 60 –np 120 ./test.mic

17

Note: other libraries may be needed for your applications but are not mounted on the cards,
in which case you can copy them over and point the LD_LIBRARY_PATH to it.

Two Ways to Launch your application natively

!   From the Host:
!   Create a hostfile
cd /mnt/micfs/discover/home/cpan2/MIC; cat hostfile.mic
borg01x045-mic0
borg01x046-mic0
!   Let the library know you are using coprocessor(s) for your MPI job
setenv I_MPI_MIC 1
!   Run
mpiexec.hydra –f hostfile –perhost 60 –np 120 /discover/home/
cpan2/MIC/test.mic

Or you can set I_MPI_MIC_PREFIX (be careful) if all Phi
executables are located in one path.
setenv I_MPI_MIC_PREFIX /discover/home/cpan2/MIC/
mpiexec.hydra –f hostfile –perhost 60 –np 120 test.mic

18

Note the PATH of the executable is accessible by Phi!

Symmetric Model – How to Compile and Run

!   Compile the code for host
mpiifort test.f –o test

!   Compile the code for Phi
mpiifort –mmic test.f –o test.mic

!   Copy the executable to the Phi, Or, make sure the
executable located in the NFS-shared directory

!   Tell the MPI library to add a postfix to the Phi executable
setenv I_MPI_MIC_POSTFIX .mic

!   Tell the MPI library to add a prefix to the Phi executable
setenv I_MPI_MIC_PREFIX /discover/home/cpan2/MIC/

19

•  MPI ranks on both the hosts and Phi(s)
•  MPI messages into/out of the hosts and Phi(s)
•  Threading possible

Symmetric Model (Cont’d)

!   Tell the library you are using coprocessors for MPI job
setenv I_MPI_MIC 1

!   Create a hostfile
cat hostfile
borg01w001
borg01w001-mic0
borg01w002
borg01w002-mic0

!   Launch the application from the host:
mpiexec.hydra –f hostfile -perhost 10 –np 40 ./test

mpiexec.hydra –genv I_MPI_DEBUG 3 -host borg01w001 –n 16 -env
OMP_NUM_THREADS 1 ./test : -host borg01w001-mic0 –n 59 -env
MIC_OMP_NUM_THREADS 4 /discover/home/cpan2/MIC/test.mic

20

When the test executable is run on the Phi, the mpirun script will automatically add
the postfix and prefix for the Phi executable

Load Balancing with Symmetric Model

!   Situation
!   Host and MIC computation performance are different
!   Host and MIC internal communication speed is different

!   MPI in symmetric mode is like running on a
heterogeneous cluster

!   Solutions
!   Approach 1: Adapt MPI mapping of the hybrid code
!   Example: m1 processes and m2 threads per host, n1 process

and n2 threads per MIC card
!   Approach 2: Change code internal mapping of workload to MPI

processes
!   Example: uneven split of calculation grid for MPI processes on

host vs. MIC
!   Analyze and improving MPI/thread load balance of

application with Trace Analyzer and Collector (ITAC)
21

Intel MPI Support for MPI/OpenMP hybrid
applications extends to MIC

!   Define I_MPI_PIN_DOMAIN to map
cpus into non-overlapping domains
!   Mapping rule: 1 MPI process per domain
!   Pin OpenMP threads inside the domain
with KMP_AFFINITY
I_MPI_PIN_DOMAIN =<size>[:<layout>]
<size> =
 omp Adjust to OMP_NUM_THREADS
 auto #total CPUs / #MPI procs
 <n> Number
<layout> =
 platform According to BIOS numbering
 compact Close to each other -- Default
 scatter Far away from each other

22

Thread Controlling

!   Avoid using the last physical core of the Phi, which is for
kernel & low level housekeeping
Example: on a 60-core Phi coprocessor, max threads usable is 236.

setenv MIC_KMP_AFFINITY “explicit,granularity=fine,
proclist=[1-236:1]”

!   Easier to use “compact”, “scatter”, or “balanced” (new,
coprocessor only). “balanced” uses all cores like
“scatter”, but keeps adjacent threads on the same core

!   Different env-variables on host and Phi:
setenv MIC_ENV_PREFIX MIC
setenv OMP_NUM_THREADS 16
setenv MIC_OMP_NUM_THREADS 236
setenv KMP_AFFINITY “granularity=fine,compact”
setenv MIC_KMP_AFFINITY “granularity=fine,balanced”

23

Selecting Network Fabrics

!   The Intel MPI dynamically select the most appropriate
fabric for communications
!   Use I_MPI_FABRICS (replacing I_MPI_DEVICE) to select a

different communication device explicitly
!   The best fabric is usually based on Infiniband (dapl and

ofa) for inter node communication and shared memory
for intra node

I_MPI_FABRICS=<fabric>|<intra-node fabric>: <inter-node fabric>
Available for Phi (shm:dapl is the default):

!   shm, tcp, ofa, dapl (RMDA-enabled device)
!   Availability checked in the order shm:dapl, shm:ofa, shm:tcp

(intra:inter)
Recommend
setenv I_MPI_FABRICS shm:ofa

24

Stack Sizes for Coprocessors

!   For master thread for the offload: the default stack limit is
12MB
!   In offloaded functions, stack is used for local or automatic arrays and

compiler temporaries
!   To increase limit:

setenv MIC_STACKSIZE=100M (no need to set MIC_ENV_PREFIX)
!   For other threads: the default stack limit is 4MB

!   Space is only needed for those local or automatic arrays for which
each thread keeps private for thread safety

!   To increase limit:
setenv MIC_OMP_STACKSIZE=10M and
setenv MIC_ENV_PREFIX=MIC

!   Typical error message if stacksize limit is reached:
!   offload error: process on the device 0 was terminated by SEGFAULT
!   offload error: EventWait failed with error COI_PROCESS_DIED

25

Environment Variables to Control Offload

!   OFFLOAD_REPORT=1 | 2
Turn on/off offload reporting at runtime
!   OFFLOAD_INIT=on_start | on_offload
Specify on offload runtime when it should initialize MIC devices
!   MIC_STACKSIZE=100M
Stack size for the master thread in offload region. Change the default if
allocating large arrays on the stack. Default 12M.
!   MIC_USE_2MB_BUFFERS=100K
Offloaded data larger than the “size” will use the 2MB pages to
maximize data transfer rate. Default is not to use the 2MB pages at all
!   MIC_LD_LIBRARY_PATH
The path where shared libraries needed by the MIC offloaded code

26

 The setting of MIC_ENV_PREFIX has no effect on the fixed MIC_* env
variables, MIC_USE_2MB_BUFFERS, MIC_STACKSIZE and
MIC_LD_LIBRARY_PATH. Those names are fixed.

How to involve Phi in your applications?

Offload Model Native / Symmetric Models
Pros:
•  Better serial processing
•  More Memory
•  Better file access and I/O

Pros:
•  Easy to run. Almost no code change
•  Better for code that does not have well-
identified hot spots than can be offloaded
without substantial data transfer overhead

Cons:
•  More program effort to add offload
directives and to tune offload performance
•  Less long-term benefit for those targeting
future MIC processors

Cons:
•  Constraints in memory footprint and I/O
•  workload imbalance

27

Highly Parallelized and Vectorized applications are required for
targeting MIC, but NOT for distinguishing between offload and
native/symmetric models.

Development Options

28

General Performance Guidelines

!   Regardless of programming model of your choice, FOUR
things you must do to attain maximum performance on
MIC
1.  Analyze and Characterize your applications
!   Hot spots – focus tuning efforts on hot spots
!   Load balance, serialization, and overhead
!   Vectorization – whether hot loops are vectorized

2.  Optimize for SIMD
!   Choose SIMD-friendly algorithms
!   Loop interchange: remove dependencies between loop

iterations
!   Minimize gather/scatter and branch misprediction

!   Vectorize inner loops with !dir$ simd or the like
!   Vectorize outer loops using Intel Cilk Plus array notation or

transform outer loops
29

General Performance Guidelines (Cont’d)

3.  Exploit thread and task parallelism
!   Balance MPI and OMP thread parallelism for Host and Phi
!   !$omp do collapse (n) to increase thread parallelism
!   Set KMP_AFFINITY to avoid resource conflicts

4.  Optimize for memory access
!   Data alignment to 64 byte boundary
!   !dir$ unroll and !dir$ unroll_fuse to minimize the required

number of loop iterations, while reducing the frequency of
cache misses

!   “Blocking” data structure (loop tiling) to maximize time data
spends in cache

!   Minimize gather/scatter operations by converting arrays of
structures (AOS) to structures of arrays (SOA)

!   Prefetching
!   Large Page Support

30

Thank You!

Lots of documentations and tutorial videos are offered by
Intel
http://software.intel.com/mic-developer

!   More brownbag tutorials to come …
!   Intel MPI on MIC
!   Running WRF on MIC
!   Language Extensions for Offload
!   Maximize Vectorization
!   Performance analysis with VTune Amplifier and Tracer Analyzer
!   Performance tuning topics for MIC

31

