
NCCS Brown
Bag Series

September 4, 2012

Code Optimization Using TAU

Chongxun (Doris) Pan
doris.pan@nasa.gov

Agenda

•  Overview of performance analysis and available
tools on Discover

•  Introduction to TAU
•  Demo 1: Performance tuning for an OpenMP

application
•  Demo 2: Performance measurement and memory leak

detection for an MPI application

3

Typical Performance Bottlenecks

4

•  Your Application
! Synchronization, load balance, communication,
memory usage, I/O usage

•  System Architecture
! Memory hierarchy, network latency, processor
architecture, I/O system setup

•  Software
! Compiler options, libraries,
runtime environment,
communication protocols…

Instrumentation!

Measurement!

Analysis!

Optimization!

Understanding Bottlenecks Is Essential

•  Different tools measure different performance metrics
!  Profiling tools: Aggregating statistics at run time, e.g., run

time on each function, total size of message sent or received.
Profiling data volumes are small.
! Gprof, mpiP, Intel Profiler, VTune Amplifier, IPM, TAU

!  Tracing tools: Collecting event history (when the events take
place in each process along a timeline). Tracing data
volumes are large.
! VampirTrace, TAU

!  Memory Profiling tools: Collecting heap memory usage per
processor, and detecting memory errors and leaks.
! TotalView/MemScape, Valgrind/Memcheck, TAU

5

Now, Which Tool?

6

Tuning and Analysis Utilities (TAU)

•  Performance problem solving framework for HPC
!  Portable, scalable, flexible. And open source
!  Target all parallel programming/execution paradigms

! Fortran, C/C++. CUDA and OpenCL
! Multi-threading, MPI, MPI/OpenMP hybrid
! Even including MIC. Native support coming up

•  Integrated performance toolkit includes
!  Instrumentation, Measurement, Analysis, Visualization
!  Widely-ported performance profiling / tracing system

7

TAU: Usage Scenarios

•  How much time is spent on each routine and outer loops?
Within loops, what is the time contribution of each line
statement?

•  What is the peak heap memory usage of the code? When and
where is memory allocated/deallocated? Any memory leaks?

•  How does the code scale with different core counts?
Efficiency and run time breakdown of performance?

•  How much time used performing I/O in the code? What is the
peak read and write bandwidth of individual calls, and total
volume?

•  How many instructions are executed in some code regions?
Floating point, L1 and L2 cache misses, hits, branches taken?

8

Big Picture, First

9

Big Picture, Explained

Instrumentation: Adds probes to perform measurements
•  Source code instrumentation using pre-processors and compiler scripts
•  External library wrapping (MPI, I/O, Memory, CUDA, OpenCL,

pthread)

Measurement: Profiling or Tracing using wallclock time or HW
counters (PAPI unavailable on Discover though)

•  Interval events measure exclusive and inclusive durations
•  Throttling and run time control of low-level events that execute

frequently

Analysis: Visualization of profiles and traces
•  3D visualization of profile data in paraprof and perfexplorer
•  Trace conversion/display in external tools (Vampir, Jumpshot, ParaVer)

10

Take Home Messages

•  TAU satisfies many of our code performance tuning
needs, and a whole lot more…

•  It has a lot of components, and requires steep learning
curve to master the tool. But…

•  No worries! There are many ways to do the same
things here, so just learning a couple of tricks could
be sufficient for you

11

Take Home Messages (Cont’d)

•  This brown-bag will focus on:
!  Getting you started using TAU on Discover
!  Showing you where to find help while you are trying it

•  Useful references:
!  http://tau.uoregon.edu/tau.ppt
!  http://www.cc.gatech.edu/~vetter/keeneland/

tutorial-2011-04-14/10-tau-gpu-tutorial-part1.pdf
!  http://www.vi-hps.org/datapool/vihpstw8/TAU.pdf
!  Under our Primer:
http://www.nccs.nasa.gov/primer/computing.html#tau

12

Ok, Let’s get started…

We will explain the concepts, steps, and details
involved in performance evaluation with TAU using
two real case usage scenarios:

•  Demo 1: Performance tuning for an OpenMP
application (My openmp code does not run faster with
multiple threads, what should I do?)

•  Demo 2: Performance tuning for an MPI application
(How does the load balance of my MPI code look
like? What is the heap memory usage for each
routine? Any memory leaks?)

13

Demo 1: Performance Tuning for an OpenMP
application

1.  Instrumentation:
•  Compiler based instrumentation easily generates routine

level performance data
•  Automatic source instrumentation uses PDT for more

detailed instrumentation at the fine-grained loop, I/O tracking,
memory allocation, etc

•  Program Database Toolkit (PDT) is a framework for analyzing
source code in multiple languages

•  You will have to set a couple of environment variables and
substitute the name of your compiler with a TAU shell script
!  Use tau_f90.sh, tau_cxx.sh, or tau_cc.sh to replace ifort/

mpif90, icpc/mpicxx, or icc/mpicc respectively
14

Demo 1 – Hands-on

15

$ setenv PATH ${PATH}:/discover/nobackup/cpan2/lib/tau-2.21.2/x86_64/bin
Or place it in your shell startup files, e.g. .cshrc

$ setenv TAU_MAKEFILE /discover/nobackup/cpan2/lib/tau-2.21.2/x86_64/lib/
Makefile.tau-icpc-pdt-openmp-opari
$ setenv TAU_OPTIONS "-optVerbose -optKeepFiles”

Edit the Makefile, e.g.,
FC = tau_f90.sh # to replace ifort or mpif90
$ make

TAU uses different TAU_MAKEFILE for different configuration measurements,
e.g., to configure TAU using PDT and OpenMP
$./configure -openmp -c++=icpc -fortran=intel -cc=icc \
-pdt=/discover/nobackup/cpan2/lib/pdtoolkit-3.17 \
-opari -opari_region -opari_construct
$ make install

Source instrumentation using tau_xx.sh and
PDT

16

foo.f90

foo.inst.f90

$PDT_DIR/bin/gfparse

foo.pdb

Optional user-defined specification file, e.g.
BEGIN_INSTRUMENT_SECTION
Loops file=“foo.f90” routine=“#”
END_INSTRUMENT_SECTION

Compile-time options TAU_OPTIONS

17

Demo 1 – Hands-on

18

#PBS –l select=1:ncpus=12
#PBS …
…
setenv OMP_NUM_THREADS 8
setenv OMP_STACKSIZE 2G
setenv OMP_AFFINITY compact
setenv I_MPI_PIN_DOMAIN auto

setenv TAU_CALLPATH 1
setenv TAU_CALLPATH_DEPTH 100

cd ..
./<executable>

2. Measurement
Run the job via PBS using the
executable compiled with
tau_instrumentor:

$ ls profile*
profile.0.0.0 profile.0.0.1
… profile.0.0.8
$ paraprof --pack \
openmp_example_baseline.ppk
$ paraprof \
openmp_example_baseline.ppk

3. Analysis
Multiple profile data will be
generated after the job completes.

You can look at the bundled profile data
examples using “paraprof”:
/discover/nobackup/cpan2/Brownbag/
openmp_example_baseline.ppk
and openmp_example_4t_final.ppk

Environment Variables in TAU

19

Demo 1: Paraprof

20

Before optimization

After optimization

Demo 2: Performance measurement and
memory leak detection for an MPI application

21

$ setenv PATH ${PATH}:/discover/nobackup/cpan2/lib/tau-2.21.2/x86_64/bin
Or place it in your shell startup files, e.g. .cshrc

$ setenv /discover/nobackup/cpan2/lib/tau-2.21.2/x86_64/lib/Makefile.tau-icpc-
mpi-pdt
$ setenv TAU_OPTIONS "-optVerbose -optKeepFiles -optDetectMemoryLeaks
-optTauSelectFile=/discover/nobackup/cpan2/Brownbag/select.tau"

$ gmake clean
$ gmake install FOPT=-g FC=tau_f90.sh |& tee make.log

To configure TAU using PDT and MPI:
$./configure -mpi -mpiinc=/usr/local/intel/mpi/3.2.2.006/include64 \
-mpilib=/usr/local/intel/mpi/3.2.2.006/lib64 -c++=icpc -fortran=intel -cc=icc \
-useropt="-L/usr/local/intel/Compiler/11.0/083/lib/intel64 -lirc" \
-pdt=/discover/nobackup/cpan2/lib/pdtoolkit-3.17
$ make install

1.  Instrumentation:

Selective Instrumentation File

•  Specify an EXCLUDE/INCLUDE
list of routines/files

•  User instrumentation commands
are placed in INSTRUMENT
section

•  ? and * used as wildcard
characters for file name, # for
routine name

•  Outer-loop level instrumentation
•  Arbitrary code insertion

22

BEGIN_FILE_EXCLUDE_LIST
m_fpe*.F90
catch_types*.F90
MAPL_Base*.F90
END_FILE_EXCLUDE_LIST

BEGIN_INSTRUMENT_SECTION
memory file="*.F90" routine="#”
loops file=“*.F90” routine=“#”
io file=“foo.F90” routine=“matrix#”
END_INSTRUMENT_SECTION

An example select.tau file:

Demo 2 – Hands-on

23

#PBS –l
select=12:ncpus=12:mpiprocs=6
#PBS …
…

setenv TAU_TRACK_HEAP 1
setenv TAU_CALLPATH 1
setenv TAU_CALLPATH_DEPTH 100

cd $WORKDIR
mpirun –perhost 6 –np 72 ./<exe>

2. Measurement
$ ls profile*
profile.0.0.0 profile.1.0.0
… profile.72.0.0
$ paraprof --pack mpi_example.ppk
$ paraprof mpi_example.ppk

3. Analysis

You can look at the bundled profile data
examples using “paraprof”:
/discover/nobackup/cpan2/Brownbag/
mpi_example.ppk

Detect Memory Leaks

24

Show Context Event Window

Right click the “Memory Leak”
line, and select “Show User
Event Bar Chart”

setenv TAU_TRACK_HEAP 1
To track heap utilization at the
entry and exit of each routine

