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Agenda 

•  Overview of performance analysis and available  
tools on Discover 

•  Introduction to TAU 
•  Demo 1: Performance tuning for an OpenMP 

application 
•  Demo 2: Performance measurement and memory leak 

detection for an MPI application   
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Typical Performance Bottlenecks   
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•  Your Application 
! Synchronization, load balance, communication, 
memory usage, I/O usage 

•  System Architecture 
! Memory hierarchy, network latency, processor 
architecture, I/O system setup 

•  Software 
! Compiler options, libraries, 
runtime environment, 
communication protocols… 

Instrumentation!

Measurement!

Analysis!

Optimization!



Understanding Bottlenecks Is Essential  

•  Different tools measure different performance metrics 
!  Profiling tools: Aggregating statistics at run time, e.g., run 

time on each function, total size of message sent or received. 
Profiling data volumes are small.  
! Gprof, mpiP, Intel Profiler, VTune Amplifier, IPM, TAU 

!  Tracing tools: Collecting event history (when the events take 
place in each process along a timeline). Tracing data 
volumes are large.   
! VampirTrace, TAU 

!  Memory Profiling tools: Collecting heap memory usage per 
processor, and detecting memory errors and leaks. 
! TotalView/MemScape, Valgrind/Memcheck, TAU 
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Now, Which Tool? 
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Tuning and Analysis Utilities (TAU)  

•  Performance problem solving framework for HPC 
!  Portable, scalable, flexible. And open source 
!  Target all parallel programming/execution paradigms 

! Fortran, C/C++. CUDA and OpenCL 
! Multi-threading, MPI, MPI/OpenMP hybrid 
! Even including MIC. Native support coming up 

•  Integrated performance toolkit includes 
!  Instrumentation, Measurement, Analysis, Visualization 
!  Widely-ported performance profiling / tracing system 
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TAU: Usage Scenarios 

•  How much time is spent on each routine and outer loops? 
Within loops, what is the time contribution of each line 
statement? 

•  What is the peak heap memory usage of the code? When and 
where is memory allocated/deallocated? Any memory leaks? 

•  How does the code scale with different core counts? 
Efficiency and run time breakdown of performance? 

•  How much time used performing I/O in the code? What is the 
peak read and write bandwidth of individual calls, and total 
volume?  

•  How many instructions are executed in some code regions? 
Floating point, L1 and L2 cache misses, hits, branches taken?  
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Big Picture, First   
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Big Picture, Explained  

Instrumentation: Adds probes to perform measurements 
•  Source code instrumentation using pre-processors and compiler scripts 
•  External library wrapping (MPI, I/O, Memory, CUDA, OpenCL, 

pthread) 

Measurement: Profiling or Tracing using wallclock time or HW 
counters (PAPI unavailable on Discover though) 

•  Interval events measure exclusive and inclusive durations 
•  Throttling and run time control of low-level events that execute 

frequently 

Analysis: Visualization of profiles and traces 
•  3D visualization of profile data in paraprof and perfexplorer  
•  Trace conversion/display in external tools (Vampir, Jumpshot, ParaVer) 
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Take Home Messages 

•  TAU satisfies many of our code performance tuning 
needs, and a whole lot more… 

•  It has a lot of components, and requires steep learning 
curve to master the tool. But…  

•  No worries! There are many ways to do the same 
things here, so just learning a couple of tricks could 
be sufficient for you 
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Take Home Messages (Cont’d) 

•  This brown-bag will focus on: 
!  Getting you started using TAU on Discover 
!  Showing you where to find help while you are trying it 

•  Useful references: 
!  http://tau.uoregon.edu/tau.ppt 
!  http://www.cc.gatech.edu/~vetter/keeneland/

tutorial-2011-04-14/10-tau-gpu-tutorial-part1.pdf 
!  http://www.vi-hps.org/datapool/vihpstw8/TAU.pdf 
!  Under our Primer: 
http://www.nccs.nasa.gov/primer/computing.html#tau 
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Ok, Let’s get started… 

We will explain the concepts, steps, and details 
involved in performance evaluation with TAU using 
two real case usage scenarios: 

•  Demo 1: Performance tuning for an OpenMP 
application (My openmp code does not run faster with 
multiple threads, what should I do?) 

•  Demo 2: Performance tuning for an MPI application 
(How does the load balance of my MPI code look 
like? What is the heap memory usage for each 
routine? Any memory leaks?) 
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Demo 1: Performance Tuning for an OpenMP 
application  

1.  Instrumentation: 
•  Compiler based instrumentation easily generates routine 

level performance data 
•  Automatic source instrumentation uses PDT for more 

detailed instrumentation at the fine-grained loop, I/O tracking, 
memory allocation, etc 

•  Program Database Toolkit (PDT) is a framework for analyzing 
source code in multiple languages  

•  You will have to set a couple of environment variables and 
substitute the name of your compiler with a TAU shell script 
!  Use tau_f90.sh, tau_cxx.sh, or tau_cc.sh to replace ifort/

mpif90, icpc/mpicxx, or icc/mpicc respectively 
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Demo 1 – Hands-on 
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$ setenv PATH ${PATH}:/discover/nobackup/cpan2/lib/tau-2.21.2/x86_64/bin 
Or place it in your shell startup files, e.g. .cshrc 

$ setenv TAU_MAKEFILE /discover/nobackup/cpan2/lib/tau-2.21.2/x86_64/lib/
Makefile.tau-icpc-pdt-openmp-opari 
$ setenv TAU_OPTIONS "-optVerbose -optKeepFiles” 

Edit the Makefile, e.g.,  
FC = tau_f90.sh  # to replace ifort or mpif90 
$ make  

TAU uses different TAU_MAKEFILE for different configuration measurements, 
e.g., to configure TAU using PDT and OpenMP 
$ ./configure -openmp -c++=icpc -fortran=intel -cc=icc \ 
-pdt=/discover/nobackup/cpan2/lib/pdtoolkit-3.17 \ 
-opari -opari_region -opari_construct 
$ make install  



Source instrumentation using tau_xx.sh and 
PDT 
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foo.f90 

foo.inst.f90 

$PDT_DIR/bin/gfparse 

foo.pdb 

Optional user-defined specification file, e.g. 
BEGIN_INSTRUMENT_SECTION 
Loops file=“foo.f90” routine=“#” 
END_INSTRUMENT_SECTION  



Compile-time options TAU_OPTIONS 
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Demo 1 – Hands-on 
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#PBS –l select=1:ncpus=12 
#PBS … 
… 
setenv OMP_NUM_THREADS 8 
setenv OMP_STACKSIZE 2G 
setenv OMP_AFFINITY compact 
setenv I_MPI_PIN_DOMAIN auto 

setenv TAU_CALLPATH 1 
setenv TAU_CALLPATH_DEPTH 100 

cd .. 
./<executable>  

2. Measurement  
Run the job via PBS using the 
executable compiled with 
tau_instrumentor: 

$ ls profile* 
profile.0.0.0  profile.0.0.1 
… profile.0.0.8 
$ paraprof --pack \ 
openmp_example_baseline.ppk 
$ paraprof \ 
openmp_example_baseline.ppk 

3. Analysis  
Multiple profile data will be 
generated after the job completes. 

You can look at the bundled profile data 
examples using “paraprof”: 
/discover/nobackup/cpan2/Brownbag/
openmp_example_baseline.ppk 
and openmp_example_4t_final.ppk  



Environment Variables in TAU 
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Demo 1: Paraprof  
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Before optimization 

After optimization 



Demo 2: Performance measurement and 
memory leak detection for an MPI application   
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$ setenv PATH ${PATH}:/discover/nobackup/cpan2/lib/tau-2.21.2/x86_64/bin 
Or place it in your shell startup files, e.g. .cshrc 

$ setenv /discover/nobackup/cpan2/lib/tau-2.21.2/x86_64/lib/Makefile.tau-icpc-
mpi-pdt 
$ setenv TAU_OPTIONS "-optVerbose -optKeepFiles -optDetectMemoryLeaks 
-optTauSelectFile=/discover/nobackup/cpan2/Brownbag/select.tau" 

$ gmake clean 
$ gmake install FOPT=-g FC=tau_f90.sh |& tee make.log 

To configure TAU using PDT and MPI: 
$ ./configure -mpi -mpiinc=/usr/local/intel/mpi/3.2.2.006/include64 \ 
-mpilib=/usr/local/intel/mpi/3.2.2.006/lib64 -c++=icpc -fortran=intel -cc=icc \ 
-useropt="-L/usr/local/intel/Compiler/11.0/083/lib/intel64 -lirc" \ 
-pdt=/discover/nobackup/cpan2/lib/pdtoolkit-3.17  
$ make install 

1.  Instrumentation: 



Selective Instrumentation File  

•  Specify an EXCLUDE/INCLUDE 
list of routines/files 

•  User instrumentation commands 
are placed in INSTRUMENT 
section 

•  ? and * used as wildcard 
characters for file name, # for 
routine name 

•  Outer-loop level instrumentation 
•  Arbitrary code insertion 
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BEGIN_FILE_EXCLUDE_LIST 
m_fpe*.F90 
catch_types*.F90 
MAPL_Base*.F90 
END_FILE_EXCLUDE_LIST 

BEGIN_INSTRUMENT_SECTION  
memory file="*.F90" routine="#” 
loops file=“*.F90” routine=“#” 
io file=“foo.F90” routine=“matrix#” 
END_INSTRUMENT_SECTION 

An example select.tau file: 



Demo 2 – Hands-on 
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#PBS –l 
select=12:ncpus=12:mpiprocs=6 
#PBS … 
… 

setenv TAU_TRACK_HEAP 1 
setenv TAU_CALLPATH 1 
setenv TAU_CALLPATH_DEPTH 100 

cd  $WORKDIR  
mpirun –perhost 6 –np 72 ./<exe> 

2. Measurement  
$ ls profile* 
profile.0.0.0  profile.1.0.0 
… profile.72.0.0 
$ paraprof --pack mpi_example.ppk 
$ paraprof mpi_example.ppk 

3. Analysis  

You can look at the bundled profile data 
examples using “paraprof”:  
/discover/nobackup/cpan2/Brownbag/
mpi_example.ppk 



Detect Memory Leaks  
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Show Context Event Window 

Right click the “Memory Leak” 
line, and select “Show User 
Event Bar Chart” 

setenv TAU_TRACK_HEAP 1 
To track heap utilization at the 
entry and exit of each routine 


