
NCCS Brown
Bag Series

Using Valgrind
to Detect Memory Leaks

Chongxun (Doris) Pan
doris.pan@nasa.gov
November 8, 2012

Agenda

•  What is a Memory Leak?
•  What are the available tools to detect memory errors

for my applications?
•  What is Valgrind?
•  How does it work? How do I use it on Discover?

3

What is a Memory Leak?

•  A memory allocation that does not have a
corresponding de-allocation

•  For a given scale or platform or problem, they may
not be fatal

•  Failures could occur until modification, reuse of a
component, or moving the application to a different
cluster with a new OS

4

Detection Tools for Memory Leaks/Errors

•  A number of tools available to track memory usage for
C/C++ using wrapper libraries for malloc/free (for C)
or new/delete (for C++)
!  LeakTracer, ccmalloc, Cmemleak, NJAMD, mpatrol…

•  Only few tools available for Fortran programmers
!  Valgrind/Memcheck
!  TotalView/MemScape

http://www.nccs.nasa.gov/images/Totalview-Part2-Doris.pdf
!  TAU http://www.nccs.nasa.gov/images/TAU-brownbag.pdf
!  Intel Inspector XE (Part of Parallel Studio XE, not yet

installed on Discover. Supporting Intel compiler 12+)
http://software.intel.com/en-us/intel-inspector-xe

5

What is Valgrind?

•  Valgrind is a suite of command line tools for both
debugging and profiling codes on Linux, including
!  Memcheck -- A memory error checking tool

! Valgrind’s most popular tool. Often synonymous with
“Valgrind”

!  Cachegrind – A cache simulator
!  Callgrind – Extension of Cachegrind. A call-graph profiler
!  Massif -- A heap profiler

•  This talk focuses on Memcheck. Other tools may not
necessarily be what you need, but demonstrate things
that you could do with Valgrind.

6

What is Valgrind?

•  Largely aimed at C/C++. But it can be used on
programs written partly or entirely in Fortran, Java,
Perl, Python, assembly code, etc.

•  Can be used with existing executables without
recompiling or relinking. But the –g –O0 (for Intel
compilers, -g implies –O0) flags are recommended because
the output will be more useful, including the line
number of the source code.

7

What Errors does Valgrind/Memcheck Detect?

•  Reading/writing freed memory or incorrect memory
areas

•  Uninitialized values
•  Incorrect freeing of memory, such as double freeing

heap blocks
•  Misuse of functions for memory allocations: new(),

malloc(), free(), deallocate(), etc.
•  Memory leaks - unintentional memory consumption

often related to program logic flaws which lead to
loss of memory pointers prior to deallocation

8

Limitations of Valgrind

•  Does not perform bounds checking on static arrays
(i.e., memory allocated on the stack)

•  Only checks programs dynamically -- May report no
errors on a particular input set although the program
contains bugs

•  Consumes more memory (~2x)
•  Slows down the programs (10x and more)
•  Optimized binaries can cause Valgrind to wrongly

report uninitialized value errors

9

Limitations of Valgrind (Cont’d)

•  You will encounter a lot of false positives, specially
for Fortran IO routines. See later slides on how to
filter those out.

•  Limited support for debugging parallel programs
!  Helgrind: debugging programs with POSIX pthreads

threading primitives. No OpenMP support.
!  MPI support consists of a library of wrapper functions for

PMPI_* interface, buildable with mpicc
!  Expect a lot of false errors!

•  NOT suitable to debug large HPC applications

10

Versions of Valgrind Installed on Discover

•  The default version after the SP1 upgrade is 3.5.0
•  The latest version is built on SLES11/SP1 under
/discover/nobackup/cpan2/lib/valgrind-3.8.1/build-SP1

valgrind [valgrind-options] ./prog.x [prog-options]
“--tool=memcheck –leak-check=summary” is the default
--log-file=filename can direct output to a file

11

discover15:$ /usr/bin/valgrind --version
valgrind-3.5.0
discover15:$ which valgrind
/discover/nobackup/cpan2/lib/valgrind-3.8.1/build-SP1/bin/valgrind
discover15:$ valgrind –version
valgrind-3.8.1
discover15:$ valgrind --help

A few simple examples –
Ex 1: Reading/writing out-of-bound

All

All the example codes
presented are located on
/discover/nobackup/cpan2/
Valgrind

12

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv){
 int i;
 int *a = malloc(sizeof(int) * 10);
 if (!a) return -1;
 for (i = 0; i < 11; i++){
 a[i] = i; /* problem here */
 }
 free(a);
 return 0;
}

discover15:$ module list
Currently Loaded Modulefiles:
 1) comp/intel-12.1.0.233 3) tool/tview-8.9.2.2
 2) mpi/impi-4.0.1.007-beta 4) other/comp/gcc-4.6.3-sp1
discover15:$ icc -g -O0 -o ex1 ex1.c (or using gcc)
discover15:$ valgrind ./ex1
==1896== Memcheck, a memory error detector
==1896== Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward et al.
==1896== Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info
==1896== Command: ./ex1
==1896==
==1896== Invalid write of size 4
==1896== at 0x4005BC: main (ex1.c:9)
==1896== Address 0x57fc068 is 0 bytes after a block of size 40 alloc'd
==1896== at 0x4C2756F: malloc (vg_replace_malloc.c:270)
==1896== by 0x40057F: main (ex1.c:6)
==1896==
==1896==
==1896== HEAP SUMMARY:
==1896== in use at exit: 0 bytes in 0 blocks
==1896== total heap usage: 1 allocs, 1 frees, 40 bytes allocated
==1896==
==1896== All heap blocks were freed -- no leaks are possible
==1896==
==1896== For counts of detected and suppressed errors, rerun with: -v
==1896== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 5 from
5)

What we learned from Example 1:

•  You can ignore “1896”, the process ID
•  The first line (“Invalid write…”) tells the type of the

error, followed by a stack trace showing where the
problem occurred. If the stack trace is not big enough,
use –num-caller=<number> option

•  Notice that some errors are suppressed -- this is
because they could be from standard library routines
rather than your own code.

13

Ex 2: Uninitialized values

14

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char** argv){
 int i;
 int a[10];
 for (i = 0; i < 9; i++)
 a[i] = i;

 for (i = 0; i < 10; i++){
 printf("%d ", a[i]);
 }
 printf("\n");
 return 0;
}

discover15:$ icc -g -O0 -o ex2 ex2.c
discover15:$./ex2
0 1 2 3 4 5 6 7 8 4195792
discover15:$ valgrind ./ex2
…
==5871== Use of uninitialised value of size 8
==5871== at 0x52DCA43: _itoa_word (in /lib64/libc-2.11.1.so)
==5871== by 0x52DFAD6: vfprintf (in /lib64/libc-2.11.1.so)
==5871== by 0x52E7AA9: printf (in /lib64/libc-2.11.1.so)
==5871== by 0x40058A: main (ex2.c:11)
==5871==
==5871== Conditional jump or move depends on uninitialised value(s)
==5871== at 0x52DCA4D: _itoa_word (in /lib64/libc-2.11.1.so)
==5871== by 0x52DFAD6: vfprintf (in /lib64/libc-2.11.1.so)
==5871== by 0x52E7AA9: printf (in /lib64/libc-2.11.1.so)
==5871== by 0x40058A: main (ex2.c:11)
…
0 1 2 3 4 5 6 7 8 4195792
==5871==
==5871== HEAP SUMMARY:
==5871== in use at exit: 0 bytes in 0 blocks
==5871== total heap usage: 0 allocs, 0 frees, 0 bytes allocated
==5871==
==5871== All heap blocks were freed -- no leaks are possible
==5871==
==5871== For counts of detected and suppressed errors, rerun with: -v
==5871== Use --track-origins=yes to see where uninitialised values come from
==5871== ERROR SUMMARY: 17 errors from 5 contexts (suppressed: 5 from 5)

What we learned from Example 2:

•  If you run with the option --track-origins=yes,
valgrind will give additional information about where
the uninitialized values come from.

•  Notice that the output of the program and the output
of valgrind are interleaved. To redirect the output to a
separate file, using --log-file=filename

15

Ex 3: Memory leaks

16

program ex3
integer*4, parameter :: array_mb = 500
integer*4 :: i, im, is
integer*4, pointer, dimension(:) :: p_array
integer*4 :: mb = 1024*1024/4

im = array_mb * mb

do i = 1,2
! explicit deallocation P_array would fix
this problem
allocate (p_array(im), stat=is)
call use_array (p_array, im)
write (*,*) i,' p_array allocated'
end do

end

subroutine use_array (array, im)
integer*4 im, array(im), i

do i = 1,im
array(i) = im-i
end do
end

discover15:$ ifort -g -O0 -o ex3 ex3.f90
discover15:$./ex3
Exit Normally
discover15:$ valgrind --suppressions=./myvalgrind.supp --leak-
check=full ./ex3
…
==3548== HEAP SUMMARY:
==3548== in use at exit: 1,048,576,032 bytes in 3 blocks
==3548== total heap usage: 10 allocs, 7 frees, 1,048,588,551 bytes allocated
==3548==
==3548== 524,288,000 bytes in 1 blocks are possibly lost in loss record 3 of 3
==3548== at 0x4C2756F: malloc (vg_replace_malloc.c:270)
==3548== by 0x406653: for_allocate (in /gpfsm/dnb31/cpan2/Valgrind/ex3)
==3548== by 0x402B94: MAIN__ (ex3.f90:11)
==3548== by 0x402AAB: main (in /gpfsm/dnb31/cpan2/Valgrind/ex3)
==3548==
==3548== LEAK SUMMARY:
==3548== definitely lost: 0 bytes in 0 blocks
==3548== indirectly lost: 0 bytes in 0 blocks
==3548== possibly lost: 524,288,000 bytes in 1 blocks
==3548== still reachable: 524,288,032 bytes in 2 blocks
==3548== suppressed: 0 bytes in 0 blocks
==3548== Reachable blocks (those to which a pointer was found) are not
shown.
==3548== To see them, rerun with: --leak-check=full --show-reachable=yes
==3548==
==3548== For counts of detected and suppressed errors, rerun with: -v
==3548== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 40 from
37)

What we learned from Example 3:

•  Several kinds of leaks reported:
!  "definitely lost": leaking memory -- fix it!
!  “possibly lost”: general indicates leaking memory – fix it!
!  “indirect lost”: usually disappear if the “definitely” lost

block that caused the indirect leak is fixed.

•  Recommend to always use --leak-check=full for leak
detection. It will give details for each definitely lost
or possibly lost block.

•  To find absolutely every unpaired call to allocate/
deallocate, you'll need to use the --show-
reachable=yes option.

17

Error Suppressions

•  Valgrind detects many errors (some are false
positives) in system C or Fortran libraries.

•  At startup it reads a default suppression file
$PREFIX/lib/config/default.supp

•  You can create your own suppression file(s) -- very
useful to suppress errors that you know are false
positives.

•  Approach: Use --gen-suppressions=all|yes option to
generate suppressions, create your own suppression
file, and apply them using --suppressions=/path/to/
myfile.supp

18

Error Suppressions

19

discover15:$ valgrind --gen-suppressions=all ./ex3
…
==8131== Use of uninitialised value of size 8
==8131== at 0x429EA1: for__add_to_lf_table (in /gpfsm/dnb31/cpan2/Valgrind/ex3)
==8131== by 0x441B7D: for__open_proc (in /gpfsm/dnb31/cpan2/Valgrind/ex3)
==8131== by 0x42FF5A: for__open_default (in /gpfsm/dnb31/cpan2/Valgrind/ex3)
==8131== by 0x409019: for_write_seq_lis (in /gpfsm/dnb31/cpan2/Valgrind/ex3)
==8131== by 0x402EF2: MAIN__ (ex3.f90:13)
==8131== by 0x402AAB: main (in /gpfsm/dnb31/cpan2/Valgrind/ex3)
==8131==
{
 <insert_a_suppression_name_here>
 Memcheck:Value8
 fun:for__add_to_lf_table
 fun:for__open_proc
 fun:for__open_default
 fun:for_write_seq_lis
 fun:MAIN__
 fun:main
}
…
discover15:$ vim myvalgrind.supp
discover15:$ valgrind --suppressions=./myvalgrind.supp ./ex3

Debugging MPI Programs

•  You can always do “mpirun –np n valgrind ./exe ..”
but expect a LOT of false positives that Memcheck
reports for MPI calls

•  Valgrind supports a library of wrapper functions for
the PMPI_* interface, buildable with mpicc only

•  The wrappers incorporate into the application’s
memory space, either by direct linking or by
LD_PRELOAD, reducing the number of false errors
on MPI applications

20

Sample PBS Script

21

#!/usr/bin/csh
#PBS -N Test_Valgrind
#PBS -l walltime=1:00:00
#PBS –l select=2:ncpus=12:mpiprocs=12
#PBS -j oe
#PBS -o PBS_output
#PBS -W umask=022

module purge
module load other/comp/gcc-4.6.3-sp1 other/mpi/openmpi/1.6.3-gcc-4.6.3

cd /discover/nobackup/cpan2/Valgrind
mpif90 –g –O0 –o testmpi testmpi.f90

setenv LD_PRELOAD /discover/nobackup/cpan2/lib/valgrind-3.8.1/build-SP1-mpi/lib/valgrind/
libmpiwrap-amd64-linux.so
setenv MPIWRAP_DEBUG quiet

mpirun –np 24 valgrind --log-file=out.%p ./testmpi

Notes on Debugging MPI Programs

•  Compile your application with the same compiler and
mpi module that we built the wrappers with. Using a
different MPI-library will generate a lot more false
messages in your output file.

•  %p is replaced with the current process ID. --log-
file=out.%p is very useful for programs that invoke
multiple processes.

•  The wrapping is done at the MPI interface, so there
still could be a large number of false errors reported
in the MPI implementation below the interface.

•  But you know how to suppress them now!
22

Useful Options for Valgrind (version 3.8.1)

--help or -h Print help command
--help-debug Print help command plus debugging option
--quiet or -q Show only the error message
--version Show version
--log-file=<file> Log Valgrind output messages to <file>
--num-callers=<number>
[default:12]

Show <number> callers in stack traces

--gen-suppressions=no|yes|all
[default: no]

print suppressions for errors

--suppressions=<filename> Use the file described in <filename> to suppress
errors

23

Useful Options for Memcheck

--leak-check=no|summary|full
[default: summary]

Valgrind tracks all memory block allocations.
When the program finishes it prints which blocks
have not been freed. The option full shows a lot of
detail.

--show--reachable=no|yes
[default: no]

Print some information about blocks of memory
not deallocated but which have references.

–leak-resolution=low|med|high
[default: high]

If the option low is enabled each single message
will print only the first time it will be matched in
leak stack traces. High prints the same message for
each occurrence.

--track-origins=no|yes
[default: no]

Show origins of undefined values or not

24

Setting Default Options

•  Valgrind also reads options from three places, in the
listed order of precedence
!  $HOME/.valgrindrc
!  The env variable $VALGRIND_OPTS
!  ./.valgrindrc

•  Any tool-specific options in $VALGRIND_OPTS or
the .valgrindrc files should be prefixed with the tool
name and a colon, e.g.,

25

discover15:$ cat ~/.valgrindrc
--memcheck:leak-check=full

More info and references…

•  Find further information on the Valgrind homepage
 http://www.valgrind.org
•  This presentation, as well as other NCCS brownbag

talks, are located at
http://www.nccs.nasa.gov/list_brown_bags.html

26

