NCCS Brown

1€S

Bag Ser

NASA Center for Climate Simulation

Using Valgrind
to Detect Memory Leaks

Chongxun (Doris) Pan

doris.pan(@nasa.gov
November 8, 2012

 What is a Memory Leak?

* What are the available tools to detect memory errors
for my applications?

* What 1s Valgrind?
« How does it work? How do I use it on Discover?

NASA Genter for Climate Simulation

What 1s a Memory Leak?

* A memory allocation that does not have a
corresponding de-allocation ptr —» [ormal allocation

Koo

leaked memory dangling pointer

* For a given scale or platform or problem, they may
not be fatal

* Failures could occur until modification, reuse of a
component, or moving the application to a different
cluster with a new OS

NASA Genter for Climate Simulation 4

* A number of tools available to track memory usage for
C/C++ using wrapper libraries for malloc/free (for C)
or new/delete (for C++)

« LeakTracer, ccmalloc, Cmemleak, NJAMD, mpatrol...
* Only few tools available for Fortran programmers

+ Valgrind/Memcheck

+ TotalView/MemScape
http://www.nccs.nasa.gov/images/Totalview-Part2-Doris.pdf

<« TAU http://www.nccs.nasa.gov/images/TAU-brownbag.pdf

« Intel Inspector XE (Part of Parallel Studio XE, not yet
installed on Discover. Supporting Intel compiler 12+)
http://software.intel.com/en-us/intel-inspector-xe

NASA Genter for Climate Simulation 5

What 1s Valgrind?

* Valgrind 1s a suite of command line tools for both
debugging and profiling codes on Linux, including
« Memcheck -- A memory error checking tool

« Valgrind’s most popular tool. Often synonymous with
“Valgrind”

« Cachegrind — A cache simulator
« Callgrind — Extension of Cachegrind. A call-graph profiler
« Massif -- A heap profiler

* This talk focuses on Memcheck. Other tools may not
necessarily be what you need, but demonstrate things
that you could do with Valgrind.

NASA Genter for Climate Simulation 6

What 1s Valgrind?

* Largely aimed at C/C++. But 1t can be used on
programs written partly or entirely in Fortran, Java,
Perl, Python, assembly code, etc.

* Can be used with existing executables without
recompiling or relinking. But the —g —OO0 (for Intel
compilers, -g implies —00) flags are recommended because
the output will be more useful, including the line
number of the source code.

NASA Genter for Climate Simulation 7

What Errors does Valgrind/Memcheck Detect?

Reading/writing freed memory or incorrect memory
areas

Uninitialized values

Incorrect freeing of memory, such as double freeing
heap blocks

Misuse of functions for memory allocations: new(),
malloc(), free(), deallocate(), etc.

Memory leaks - unintentional memory consumption
often related to program logic flaws which lead to
loss of memory pointers prior to deallocation

NASA Genter for Climate Simulation

Limitations of Valgrind

Does not perform bounds checking on static arrays
(1.e., memory allocated on the stack)

Only checks programs dynamically -- May report no
errors on a particular input set although the program
contains bugs

Consumes more memory (~2X)
Slows down the programs (10x and more)

Optimized binaries can cause Valgrind to wrongly
report uninitialized value errors

NASA Genter for Climate Simulation

Limitations of Valgrind (Cont’d)

* You will encounter a lot of false positives, specially
for Fortran 10 routines. See later slides on how to
filter those out.

* Limited support for debugging parallel programs

« Helgrind: debugging programs with POSIX pthreads
threading primitives. No OpenMP support.

« MPI support consists of a library of wrapper functions for
PMPI * interface, buildable with mpicc

+ Expect a lot of false errors!

* NOT suitable to debug large HPC applications

NASA Genter for Climate Simulation 10

Versions of Valgrind Installed on Discover

* The default version after the SP1 upgrade 1s 3.5.0
* The latest version 1s built on SLES11/SP1 under
/discover/nobackup/cpan2/lib/valgrind-3.8.1/build-SP1

discover15:$ /usr/bin/valgrind --version

valgrind-3.5.0

discover15:$ which valgrind
/discover/nobackup/cpan2/lib/valgrind-3.8.1/build-SP1/bin/valgrind
discover15:$ valgrind —version

valgrind-3.8.1

discover15:$ valgrind --help

valgrind [valgrind-options] ./prog.x [prog-options]

“--tool=memcheck —leak-check=summary” 1s the default

--log-file=filename can direct output to a file
.

A few simple examples —
Ex 1: Reading/writing out-of-bound

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv){
int i;
int *a = malloc(sizeof(int) * 10);
if (a) return -1;
for (i=0;i<11;i++){
ali] = i; /I* problem here */
}
free(a);
return O;

}

All the example codes
presented are located on

/discover/nobackup/cpan2/
Valgrind

discover15:$ module list
Currently Loaded Modulefiles:

1) comp/intel-12.1.0.233 3) tool/tview-8.9.2.2

2) mpi/impi-4.0.1.007-beta 4) other/comp/gcc-4.6.3-sp1
discover15:$ icc -g -O0 -0 ex1 ex1.c (or using gce)
discover15:$ valgrind ./ex1

==1896==
==1896==
==1896==
==1896==
==1896==
==1896==
==1896==
==1896==
==1896==
==1896==
==1896==
==1896==
==1896==
==1896==
==1896==
==1896==
==1896==
==1896==
==1896==
==1896==
5)

Memcheck, a memory error detector

Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward et al.
Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info
Command: ./ex1

Invalid write of size 4
at 0x4005BC: main (ex1.c:9)

Address 0x57fc068 is 0 bytes after a block of size 40 alloc'd
at 0x4C2756F: malloc (vg_replace_malloc.c:270)
by 0x40057F: main (ex1.c:6)

HEAP SUMMARY:
in use at exit: 0 bytes in 0 blocks
total heap usage: 1 allocs, 1 frees, 40 bytes allocated

All heap blocks were freed -- no leaks are possible

For counts of detected and suppressed errors, rerun with: -v
ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 5 from

NASA Genter for Climate Simulation 12

What we learned from Example 1:

* You can ignore “1896”, the process 1D

* The first line (“Invalid write...”) tells the type of the
error, followed by a stack trace showing where the
problem occurred. If the stack trace 1s not big enough,
use —num-caller=<number> option

* Notice that some errors are suppressed -- this is
because they could be from standard library routines
rather than your own code.

NASA Genter for Climate Simulation 13

Ex 2: Uninitialized values

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char** argv){
int i;

int a[10];
for(i=0;i<9;i++)
ali] = i;

for (i=0;i<10; i++){
printf("%d ", ali]);

}

printf("\n");

return O;

}

discover15:$ icc -g -O0 -0 ex2 ex2.c

discover15:$./ex2
01234567 84195792

discover15:$ valgrind ./ex2

==5871== Use of uninitialised value of size 8

==5871== at 0x52DCA43: _itoa_word (in /lib64/libc-2.11.1.s0)
==5871== by 0x52DFADG: vfprintf (in /lib64/libc-2.11.1.s0)
==5871== by 0x52E7AA9: printf (in /lib64/libc-2.11.1.s0)
==5871== by 0x40058A: main (ex2.c:11)

==5871==

==5871== Conditional jump or move depends on uninitialised value(s)
==5871==at 0x52DCA4D: _itoa_word (in /lib64/libc-2.11.1.s0)
==5871== by 0x52DFADG: vfprintf (in /lib64/libc-2.11.1.s0)
==5871== by 0x52E7AA9: printf (in /lib64/libc-2.11.1.s0)
==5871== by 0x40058A: main (ex2.c:11)

01234567 84195792

==5871==
==5871== HEAP SUMMARY:
==5871== in use at exit: 0 bytes in 0 blocks

==5871== total heap usage: 0 allocs, 0 frees, 0 bytes allocated

==5871==

==5871== All heap blocks were freed -- no leaks are possible

==5871==

==5871== For counts of detected and suppressed errors, rerun with: -v
==5871== Use --track-origins=yes to see where uninitialised values come from
==5871== ERROR SUMMARY: 17 errors from 5 contexts (suppressed: 5 from 5)

What we learned from Example 2:

 If you run with the option --track-origins=yes,
valgrind will give additional information about where
the uninitialized values come from.

==29315== Conditional jump or move depends on uninitialised value(s)
==29315== at 0x52E029B: vfprintf (in /lib64/libc-2.11.1.s0)
==29315== by 0x52E7AA9: printf (in /lib64/libc-2.11.1.s0)

==29315== by 0x40058A: main (ex2.c:11)

==29315== Uninitialised value was created by a stack allocation
==29315== at 0x400514: main (ex2.c:4)

* Notice that the output of the program and the output
of valgrind are interleaved. To redirect the output to a
separate file, using --log-file=filename

NASA Center for Climate Simulation 15

Ex 3: Memory leaks

program ex3

integer*4, parameter :: array_mb = 500
integer*4 :: i, im, is

integer*4, pointer, dimension(:) :: p_array
integer*4 :: mb = 1024*1024/4

im = array_mb * mb

doi=1,2

I explicit deallocation P_array would fix
this problem

allocate (p_array(im), stat=is)

call use_array (p_array, im)

write (*,*) i," p_array allocated'

end do

end

subroutine use_array (array, im)
integer*4 im, array(im), i

doi=1,im
array(i) = im-i
end do

end

discover15:$ ifort -g -O0 -0 ex3 ex3.f90

discover15:$./ex3

Exit Normally

discover15:$ valgrind --suppressions=./myvalgrind.supp --leak-
check=full ./ex3

==3548== HEAP SUMMARY:

==3548== in use at exit: 1,048,576,032 bytes in 3 blocks

==3548== total heap usage: 10 allocs, 7 frees, 1,048,588,551 bytes allocated
==3548==

==3548== 524,288,000 bytes in 1 blocks are possibly lost in loss record 3 of 3

==3548==at 0x4C2756F: malloc (vg_replace_malloc.c:270)

==3548== by 0x406653: for_allocate (in /gpfsm/dnb31/cpan2/Valgrind/ex3)
==3548== by 0x402B94: MAIN__ (ex3.f90:11)

==3548== by 0x402AAB: main (in /gpfsm/dnb31/cpan2/Valgrind/ex3)
==3548==

==3548== LEAK SUMMARY:

==3548== definitely lost: 0 bytes in 0 blocks

==3548== indirectly lost: 0 bytes in 0 blocks

==3548== possibly lost: 524,288,000 bytes in 1 blocks
==3548== still reachable: 524,288,032 bytes in 2 blocks
==3548== suppressed: 0 bytes in 0 blocks

==3548== Reachable blocks (those to which a pointer was found) are not
shown.

==3548== To see them, rerun with: --leak-check=full --show-reachable=yes
==3548==

==3548== For counts of detected and suppressed errors, rerun with: -v
==3548== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 40 from
37)

What we learned from Example 3:

» Several kinds of leaks reported:
« "definitely lost": leaking memory -- fix it!
« “possibly lost”: general indicates leaking memory — fix it!
+ “indirect lost”: usually disappear 1f the “definitely” lost
block that caused the indirect leak 1s fixed.
 Recommend to always use --leak-check=full for leak
detection. It will give details for each definitely lost
or possibly lost block.

* To find absolutely every unpaired call to allocate/
deallocate, you'll need to use the --show-
reachable=yes option.

NASA Genter for Climate Simulation 17

Error Suppressions

* Valgrind detects many errors (some are false
positives) 1in system C or Fortran libraries.

« At startup 1t reads a default suppression file
$PREFIX/lib/config/default.supp

* You can create your own suppression file(s) -- very
useful to suppress errors that you know are false
positives.

* Approach: Use --gen-suppressions=all|yes option to
generate suppressions, create your own suppression
file, and apply them using --suppressions=/path/to/
myfile.supp

1

Error Suppressions

discover15:$ valgrind --gen-suppressions=all ./ex3

==8131== Use of uninitialised value of size 8
==8131== at Ox429EA1: for__add_to_If table (in /gpfsm/dnb31/cpan2/Valgrind/ex3)
==8131== by 0x441B7D: for__open_proc (in /gpfsm/dnb31/cpan2/Valgrind/ex3)
==8131== by Ox42FF5A: for__open_default (in /gpfsm/dnb31/cpan2/Valgrind/ex3)
==8131== by 0x409019: for_write_seq_lis (in /gpfsm/dnb31/cpan2/Valgrind/ex3)
==8131== by 0x402EF2: MAIN__ (ex3.f90:13)
==8131== by 0x402AAB: main (in /gpfsm/dnb31/cpan2/Valgrind/ex3)
==8131==
{

<insert_a_suppression_name_here>

Memcheck:Value8

fun:for__add to_If table

fun:for__open_proc

fun:for__open_default

fun:for_write_seq_lis

fun:MAIN__

fun:main

}

discover15:$ vim myvalgrind.supp
discover15:$ valgrind --suppressions=./myvalgrind.supp ./ex3

NASA Genter for Climate Simulation

19

Debugging MPI Programs

* You can always do “mpirun —np » valgrind ./exe ..”
but expect a LOT of false positives that Memcheck
reports for MPI calls

» Valgrind supports a library of wrapper functions for
the PMPI * interface, buildable with mpicc only

* The wrappers incorporate into the application’s
memory space, either by direct linking or by

LD PRELOAD, reducing the number of false errors
on MPI applications

NASA Genter for Climate Simulation 20

Sample PBS Script

#!/usr/bin/csh

#PBS -N Test_Valgrind

#PBS -I walltime=1:00:00

#PBS —| select=2:ncpus=12:mpiprocs=12
#PBS -j oe

#PBS -0 PBS_output

#PBS -W umask=022

module purge
module load other/comp/gcc-4.6.3-sp1 other/mpi/openmpi/1.6.3-gcc-4.6.3

cd /discover/nobackup/cpan2/Valgrind
mpif90 —g —O0 —o testmpi testmpi.f90

setenv LD_PRELOAD /discover/nobackup/cpan2/lib/valgrind-3.8.1/build-SP1-mpi/lib/valgrind/
libmpiwrap-amd64-linux.so
setenv MPIWRAP_DEBUG quiet

mpirun —np 24 valgrind --log-file=out.%p ./testmpi

NASA Genter for Climate Simulation 21

Notes on Debugging MPI Programs

* Compile your application with the same compiler and
mpi1 module that we built the wrappers with. Using a
different MPI-library will generate a lot more false
messages 1n your output file.

* %p 1s replaced with the current process ID. --log-

file=out.%p 1s very useful for programs that invoke
multiple processes.

* The wrapping 1s done at the MPI interface, so there
still could be a large number of false errors reported
in the MPI implementation below the interface.

* But you know how to suppress them now!
22

Useful Options for Valgrind (version 3.8.1)

--help or -h Print help command

--help-debug Print help command plus debugging option
--quiet or -q Show only the error message

--version Show version

--log-file=<file>

--num-callers=<number>
[default:12]

--gen-suppressions=no|yes|all
[default: no]

--suppressions=<filename>

Log Valgrind output messages to <file>

Show <number> callers 1n stack traces

print suppressions for errors

Use the file described in <filename> to suppress
errors

NASA Genter for Climate Simulation 23

Useful Options for Memcheck

--leak-check=no|summary/|full
[default: summary]

Valgrind tracks all memory block allocations.
When the program finishes it prints which blocks
have not been freed. The option full shows a lot of
detail.

--show--reachable=no|yes
[default: no]

—leak-resolution=low|med|high
[default: high]

--track-origins=nolyes
[default: no]

Print some information about blocks of memory
not deallocated but which have references.

If the option low is enabled each single message
will print only the first time it will be matched in
leak stack traces. High prints the same message for
each occurrence.

Show origins of undefined values or not

NASA Genter for Climate Simulation 24

Setting Default Options

* Valgrind also reads options from three places, in the
listed order of precedence
«» SHOME/.valgrindrc
<+ The env variable SVALGRIND OPTS

« ./.valgrindrc

* Any tool-specific options in $VALGRIND OPTS or
the .valgrindrc files should be prefixed with the tool
name and a colon, e.g.,

discover15:$ cat ~/.valgrindrc
--memcheck:leak-check=full

NASA Genter for Climate Simulation 25

More info and references...

* Find further information on the Valgrind homepage

http://www.valgrind.org

» This presentation, as well as other NCCS brownbag
talks, are located at

http://www.nccs.nasa.gov/list brown bags.html

NASA Genter for Climate Simulation 26

