
NCCS Brown
Bag Series

Vectorization
Efficient SIMD parallelism on NCCS systems

Craig Pelissier* and Kareem Sorathia
craig.s.pelissier@nasa.gov,

kareem.a.sorathia@nasa.gov
SSSO code 610.3

January 28, 2014

Motivation

3

• Compilers guarantee that the results of a program are the same as the results
obtained as if the program is executed sequentially! Programs in general are not
executed sequentially.

• Compilers try to exploit the inherent parallelism in the programs. Programmers
sometimes need to help out the compiler.

• Programs need to be written in a way that exploits the parallel mechanisms
available on modern CPUs!

Exploiting parallelism in programs will increase throughput and more
efficiently utilize modern CPUs.

Vector instructions (SIMD)

4

• Single Instruction Multiple Data (SIMD) is a commonly occurring situation!

Assumptions:
(1) Instructions are independent (no dependencies).
(2) Instructions are identical (same operation).
(3) Multiple data (multiple iterations).

Q: How to exploit parallelism?
A: Modern CPUs use vector registers!

Vector processes

5

• Intel offers vector registers that are essentially large registers (“register
banks”) that can fit several data elements.

• Vector registers (Intel) are fully pipelined and execute with 4-cycle latency
and single cycle throughput.

Size [bits] Elements/reg
(float,double)

Resource

128 (4,2) Westmere

256 (8,4) Sandy Bridge

512 (16,8) Intel Xeon Phi

NCCS systems overview

6

Scalable Unit 1-4, 7 Scalable Unit 8,9 Scalable Unit 8
coprocessors

2.8 GHz Intel Xeon
Westmere

2.6 GHz Intel Xeon Sandy
Bridge

Intel Many Integrated Core
(Phi 5110p) (480 cards)

2 hex-core processors/node 2 oct-core processors/node 60 cores

24 GB of memory/node 32 GB of memory/node 6 GB memory/card

Infiniband DDR Infiniband QDR PCIexpress

SSE 128b AVX 256b AVX 512b

SSE = Streaming SIMD Extensions (1999)
AVX = Advanced Vector eXtensions (2011)

Guidelines for vectorizable code by example

7

This is in no way an exhaustive list of what will and what won’t vectorize. More
information can be found at Intel’s guidelines here and other available resources online.

Use simple for loops.

Loop bounds must be known at compile
time.

No conditional exit of loops.

✗

✗

http://software.intel.com/sites/products/documentation/doclib/stdxe/2013/composerxe/compiler/fortran-mac/GUID-D284C1EE-BFA4-4EA3-BB67-4A3E5D50199F.htm

Guidelines for vectorizable code by example

8

Loops with dependencies can’t vectorize.

Dependences can appear in a
single line.

In larger loops dependencies can be
more subtle!

✗

✗

✓

Guidelines for vectorizable code by example

9

No control logic inside loop unless it can be masked.

Simple binary logic is allowed because it
can be masked!

More complicated branching is not
allowed!✗

✓

Guidelines for vectorizable code by example

10

No function calls inside the loop … with some exceptions.

Intrinsic math functions are allowed e.g.
trigonometric, exponential, logarithmic,
and round/floor/ceil …

Functions which can be inlined may
vectorize.?

✓

Directing the compiler

11

Auto-vectorization directive

!DIR$ IVDEP Instructs the compiler to ignore assumed vector
dependencies.

!DIR$ VECTOR [ALWAYS] Specifies how to vectorize the loop and indicates that
efficiency heuristics should be ignored. Using the
ASSERT keyword with the VECTOR [ALWAYS]
directive generates an error-level assertion message
saying that the compiler efficiency heuristics indicate that
the loop cannot be vectorize. USE DIR$ IVDEP to ignore
the assumed dependencies.

!DIR$ NOVECTOR Specifies that the loop should never be vectorized.

User-mandated directive

!DIR$ SIMD Enforces vectorization of the loops.

Some more exotic directives

12

Auto-vectorization directive

!DIR$ LOOP COUNT The value of the loop count affects heuristices used in
software pipelining, vectoriaztion, and loop-
transformations.

!DIR$ VECTOR [TEMPORAL | NONTEMPORAL] Specifies whether streaming stores should (non-temporal)
or shouldn’t be used (temporal).

Memory layout

13

• Choose data layout carefully.
• Structure of arrays SoA = good for vectorization.
• Array of Structures = good for encapsulation.

• Use efficient memory access
• Favor unit stride.
• Minimize indirect addressing (using pointers to pointers).
• Alignment of data (next slide).

More efficient for SIMD
parallelization

Better for data encapsulation

Memory layout

14

• Memory is aligned on physical n-byte boundaries.
• SANDY = WESTMERE = 32 byte, Phi = 64 byte.
• load/stores run faster on aligned data.
• Largest penalty paid on the Xeon Phi architecture.
• Directives !DEC$ VECTOR {ALIGNED |

UNALIGNED}. Caution: if data is not aligned when
accessed incorrect results or exceptions will be
thrown (segmentation fault).

• Fortran –align array[n]byte for alignment of all arrays.

Peel loop used to
achieve
alignment.

Main loop has aligned
access and is a multiple
of the vector length. Large main loop  alignment, peel, and

remainder amortized.
Small main loop  alignment and
remainder important.

First element in vectorized
loop MUST be aligned if using
aligned directive.

Alignment examples

15

✗

✓

Not all iterations in “j” are aligned!

Adding padding we can achieve
alignment at the cost of computation and
a larger memory footprint. Is it worth it?

Alignment examples

16

Choosing domains that are a multiple of the boundary length can sometimes
help with alignment e.g. in finite differencing.

✗

✓

Vectorization analysis

17

Q: How do I know if loops are vectorized?
A: Use –vec-report[0-6].

Q: How do I prioritize my vectorization efforts?
A: Simple option is to use the loop profiler provided by Intel to determine the most time
consuming loops.

1.Compile with the proper flags: -profile-functions -profile-loops=all -profile-loops-report=2.
2.Running the executable will create an XML file.
3.Run loopprofileviewer.sh to start a GUI.
4.Open XML file with GUI.

Q: How do I know how much vectorization is improving things?
A: Compiling with the flag –no-vec will turn off all vectorization. You can also use more

sophisticated software such as VTune amplifier see brown bag.

http://www.nccs.nasa.gov/images/Intel_VTune_Amplifier_XE_2013.pdf

Loop profiler output

18

Regression testing

19

• A vectorized loop may give slightly different results than the
original serial one.

• Variations in memory alignment from one run to the next may
cause drifts in answers for different runs.

• Using “-fp-model precise” may disable vectorization.
• Loops containing transcendental functions will not be vectorized.

Warning! Reproducibility and optimization are sometimes at odds. Vectorization of loops will
alter the bitwise reproducibility.

20

Thank You!

Questions?

	�NCCS Brown Bag Series����
	�Vectorization�Efficient SIMD parallelism on NCCS systems�� Craig Pelissier* and Kareem Sorathia�craig.s.pelissier@nasa.gov, �kareem.a.sorathia@nasa.gov�SSSO code 610.3��January 28, 2014
	Motivation
	Vector instructions (SIMD)
	Vector processes
	NCCS systems overview
	Guidelines for vectorizable code by example
	Guidelines for vectorizable code by example
	Guidelines for vectorizable code by example
	Guidelines for vectorizable code by example
	Directing the compiler
	Some more exotic directives
	Memory layout
	Memory layout
	Alignment examples
	Alignment examples
	Vectorization analysis
	Loop profiler output
	Regression testing
	Thank You!

