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Tech Talk Outline

« Overview of Machine Learning

 Importance of Machine Learning targeted towards Earth Science

« Usabillity of Machine Learning

« Software and hardware to support Machine Learning

« Hands on Jupyter Notebook Exercise: MODIS Water Classification Case Study
« Overview of model explainability and interpretability

« Hands on Jupyter Notebook Exercise: MODIS Water Classification XAl

« Q&A Session

Resources for this Training
https://github.com/NASAARSET/ARSET ML Fundamentals
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https://github.com/NASAARSET/ARSET_ML_Fundamentals

Overview and Theory
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The following quote from Arthur Samuel describes what Machine Learning (ML) is:

Overview of Machine Learning

“Machine learning enables a machine to automatically learn from dataq,
improve performance from experiences, and
predict things without being explicitly programmed.”

ML uses techniques from Statistics, Mathematics, and Computer Science to make
computer programs learn from data to predict an output.

h NASA’s Applied Remote Sensing Training Program 4 0



How does Machine Learning Work?
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Machine Learning Algorithms
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How Machine Learning is Applied in Earth Science
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Siwei Yu and Jianwei Ma (2021), https://doi.org/10.1029/2021RG0O00742 .
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Machine Learning Frameworks in Python

 Python-based tools dominate

Scikit-learn | 823

the machine learning 26
frameworks based e e
on Kaggle's 2021 State of sy
Data Science and Machine e
Learning survey. goctce |

« Scikit-learnis the top with over - o8

6.2

80% of data scientists using it. 7o -
- TensorFlow and Keras were

|
Tidymodels | 54

1
H20-3 | 53

each chosen by about half of None [ ¢
the data scientists for deep onall 16
learning. i 12
« Gradient boosting library
XGBoost is fourth. Image Source: Kaggle's 2021 State of Data Science and

Machine Learning survey
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Graphics Processing Unit (GPU) Role in Machine Learning

o

 There are many available platforms for  Popular GPU-Supported Python
parallel computing and programming. Libraries:
Out of them, CUDA (by NVIDIA) is the most — XGBoost
popular platform due to the following — OpenCV
reasons:

— CUML (Part of RAPIDS)
— cuUDF (Part of RAPIDS)
— CuPy (NumPy for GPU)

— CUDA runs on both Windows and Linux.

— Almost all the GPU-supported Python
libraries like CatBoost, TensorFlow,
Keras, PyTorch, OpenCV, and CuPy
were designed to run on NVIDIA CUDA-
enabled graphics cards.
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Prism — On-premises at the NCCS

22 GPU Compute Nodes

4x NVIDIA V100 GPUswith 32 GB of

VRAM and NVLink

* Duallntel Xeon Cascade Lake Gold
6248 CPUs

e 20 coreseachat 2.50GHz

e 768 GBRAM

* Dual 25Gb Ethernet networkinterfaces

*  Dual 100Gb HDR100 Infiniband high
speed network interfaces

* 3.8 TBRAID protected NVMe drives,

mounted as /Iscratch

Single DGX
8x NVIDIA A100 GPUs with 40 GB of
VRAM and NVLink
Dual AMD EPYC Rome 7742 CPUs
64 cores each at 2.25GHz
1 TB RAM
Dual 25Gb Ethernet network interfaces
Dual 100Gb HDR100 Infiniband high
speed network interfaces
14 TB RAID protected NVMe drives,
mounted as /Iscratch
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Discover - GPUs in HPC

* 12 Supermicro GPU nodes

* 4x NVIDIA A100 GPUs with 40GB of
VRAM and NV LINK

e Dual AMDEPYC

* 24 cores each at 2.89 GHz

* Rome 48-core nodes

* 512 GB of RAM

* Dual 25Gb Ethernet network interfaces

* Dual 100Gb HDR10O Infiniband high
speed network interfaces

* No Swap Space
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Machine Learning Steps

 Depending on the scale of your science problem, each one of these steps can
be done using Jupyter notebooks.

« Large scale applications and long running deep learning models can benefit
from PRISM Slurm submissions using Singularity containers.

Problem Data Data Feature
Statement Collection Preprocessing Selection
e POrOmeTer Troin Choose
Prediction .
Tuning Model Model

NASA’s Applied Remote Sensing Training Program 12 .




.:‘.. .

N './1

e :
)4

e
"

B TL e b AL

Overview of Machine Learning Algorithms



Machine Learning Algorithms: Which algorithm to choose?

« The development of machine = | —
learning algorithms has been o] (S22 L’f] ‘ l“—“i' @_H‘J =
exponentially increasing. B - | e | mmm |

« We willnot dive into the NN = I m— =
specifics of each algorithm, but 1 —
we will give you the tools to aid N "

in the selection of these for your I S VAN J—
own science problem(s). o) M ‘ T e

 You are not bounded to a G T I L
. . . — E —~ o\ e
single algorithm, buft it always / JARN R R
saves time to start from a =N T

logical base. TR et | A
.—"l I"-- r oy .
l Ls.l;.l | | r:;lm | ==

L5TM J

Core Machine Learning Algorithmes.
Image Source: github.com
NASA’s Applied Remote Sensing Training Program 14




o

Machine Learning Algorithms: Science Problem

* Which scientific question would
you like to address? We want to
identify the sign, magnitude, and
potential drivers of change in
surface water extent in X study
areq.

Performance Explainability

What information is missing to
answer this question? We need
surface water extent maps to
quantify and analyze these
drivers.

Science Problem

Dimensionality Complexity

' Componentstoaid the selection of your ML algorithm.
NASA’s Applied Remote Sensing Training Program 15 .
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Machine Learning Algorithms: Data

 What data do you have available? We
have global coverage with data from
the MODIS satellite. / \

« Do you have training data available?

We have gathered large extents of S\ / 0\

TrOIr“ng dOTO pOIHTS Spo‘riol Tobulor Spo‘riol Tobulor
i thf iS ihe dqtq Si'l'UCi'Ul'e Of YOUI' Supervised Unsupervised

data? Our data is in raster format. We \ Y '

can preprocess it to make it tabular.

* Is your dependent variable a
continuous or discrete problem? Our K-means
dependent variable is water pixels,
which is discrete (0 — no water, 1 — XGBoost
water)

CNN

Transformers

Algorithm decision branch based on data sfructure.
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Machine Learning Algorithms: Performance

Are there any performance requirements
based on your science question (e.g.,
real time vs. static)? We do not need real
time maps (e.g., disaster response teams
might need results quickly).

Is your software going to run on on-
premise, cloud, or embedded hardware?
We want our software to run both on-
premise and in the cloud.

What is more important for your project:
inference time or model performance?
We care more about model
performance than inference time.

NASA's Applied Remote Sensing Training Program
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/STIME IN ML ALGORITHMS

Random Forest

Decision Tree Support Vector

machine

Naive Bayes

Neural networks
K-means
Logistic Regression

Linear Regression

low

high >

Tradeoff between speed and accuracy.

Image Source: github.com
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Model Explainability and Interpretability — XAl

As we come fo rely on
Inferences given by machine
learning models, it is
Important that these models
be accurate and
interpretable.

NASA's Applied Remote Sensing Training Program

‘ Hybrid modelling approaches

X ATI’s future New explainability-preserving modelling approaches
research arena Interpretable feature engineering
High
P
Q
o] Post-hoc explainability techniques
35 Interpretability-driven model designs
Q
Q
av
]
)
e,
EO
Low
; >
Low High

Model interpretability

Arrietaet al. (2019), https://dol.org/10.3389/fnsys.2021.7 66980
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Why We Need Reliable Models? - XAl

« Accuracy may not be enough.

‘ Hybrid modelling approaches
XAT’s future New explainability-preserving modelling approaches
research arena Interpretable feature engineering

 Machine learning models need
to be reliable. High

« Reliabilityis determined by
interpretability and robustness.

Post-hoc explainability techniques
Interpretability-driven model designs

« Interpretability: We can explain
why a certain outcome was
predicted.

Model accuracy

« Robustness: Input can be noisy;
we stillachieve accurate Low

redictions. Low High
P Model interpretability

Arrietaet al. (2019), https://doi.org/10.3389/fnsys.2021.7 66980
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Post-Hoc Explainability Approaches - XAl

One of the most common
methods of achieving an
interpretable MLmodelis
through post-hoc
explanation methods
(done after the model is
trained).

These methods use the
output of the modelin
conjunction with the
INnputs o extract
information about the
model’s decisions.

NASA's Applied Remote Sensing Training Program

Model Black-box

model relevance

U
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"Explanatory examples
for the model:"
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Arrietaet al. (2019), https://doi.org/10.3389/fnsys.2021.766980 .
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Model Explainability and Interpretability — XAl

Using SHAP Values for Local Explanations

« Atoolused commonly - Using Shapely values to provide explanations of single
is SHAP (SHopIey decisions for black box models
Additive exPlanations). :

Black-box

« SHAP is a model- model
OgnOSTIC OpprOGCh X~ My, =Y explanations X, - E&i\
which can calculate x=(@l,,a") || > ’\f* Mg |+ )
an additive feature o e I
importance score for Armefaetal 2017
each prediction.

025 030 035 040 045 050 055 060 065 070
7.1 ir_refl_b01_1 sur_refl_b03_1 ur_refl_b02_1 sur_refl_b06_1

Image Source: https://shap.readthedocs.io/en/latest/index.html
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« Visual Transtormers (ViT)
can oufput attention maps.

« Aftention maps are the
infermediate output of the
model that highlightsthe
Important regionin the
image for the target class.

« Visualizing attention maps
can lead to a better
understanding of how the
model is processing the
input and which features
are most important for the

prediction. _
ie) o 1] . g)
Remote sensing images and visualization of attention maps in
different moduls. Shamsolmoali et al. (2020), https://doi.org/
NASA's Applied Remote Sensing Training Program 10.1 ]OQ/TGRS-QOQ] 3112481 24
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Closing Remarks

« We have:

— Provided a base on the fundamentals of Machine Learning for Earth Science
using a binary classification problem as an example.

— Introduced the general concept of machine learning and possible scenarios
of its benefits across other domains.

— Provided the base 1o produce an effective training, validation, and test
dataset from both raster and tabular data sources.

— Provided the tools to train and perform inference of a XGBoost model,
iIncluding its fine-tuning and XAl analysis.

This is jJust an introduction to the very broad field of Machine Learning. The
fundamentals learned in this training will provide the basis to understand
literature and to know when a specific algorithm might be the most applicable.
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Thank Youl!
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