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Eddy Covariance

This method estimates gas exchange rates by 

synthesizing windspeed and trace gas 

concentrations.

We applied two validation protocols to evaluate each algorithm’s 

performance as NEE predictors. 11 statistics are calculated as 

models are tested at each site. Full-record statistics are 

generated at completion as holistic criteria for the learning 

method itself.
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“Leave-one-out” or LOO (global, cross-site)
As the algorithm increments through the sites, training data 

are gathered at all sites save the one at the current 

increment. For example, if the neural network is working at 

the 13th site, input data for sites 1-12 and 14-159 will be 

used to train, with the data at site 13 reserved for testing.

Sensitivity Analyses
An auxiliary objective in this project was to determine which input variables contribute most to 

model outcome to optimize data selection. The algorithms were trained as above and tested 

with k-fold validation, but with output statistics accounting for the relative weighting of the input 

classes (i.e., variable columns in the data structure) throughout the process. 

K-fold (local, site-specific)
In this approach, the algorithm progresses through the data structure on a site-by-

site basis and data partitioning is governed by the time dimension (i.e., 

observations). Prior to training, the number of validation partitions is parameterized 

(“5” was chosen as this k-value). For each site and at each epoch, five 

observations are selected; the algorithm trains on four and is evaluated on the fifth. 

Fig. 1: FLUXNET sites. Darker areas indicate lower representation in the network. 

Inset: Anemometer on site in Denmark.

Artificial neural networks (ANN)
At each epoch in the time series, training data are presented to a hidden layer of 

weighted “neurons”, an internal collection of parameterized processing nodes that 

adjust in selective power throughout training. As the data are processed, relationships 

develop between local or remotely-sensed state variables and net ecosystem 

exchange. As training time progresses, neurons become better or worse predictors of 

NEE and are selected accordingly, having “learned” the relative associations among the 

variables. The tuning of these neurons results in a computational network able to 

consistently and accurately predict NEE given any modulation of the input variables 

used at training.

Gaussian process regressions (GPR)
Given an input of training data, Gaussian (normal) distributions 

are fitted between every pair of states (i.e., all variable data for 

one observation and the next). The means of these distributions 

become the interpolants between the states. At each epoch of 

training, new Gaussian means are found between each 

subsequent pair of states, resulting in a 

smooth predictive model encompassing all possible states that, 

when provided with data lacking NEE, 

will fit a NEE value based on its associated variables.

Random forests and tree-bagging (TBG)
This class of algorithm extends the concept of decision trees, where training data 

are evaluated against parameterized rules that govern its descent through a “tree” 

of possible associations, resulting in NEE output that matches to the specific 

distribution of input variables. In a random forest, subsets of training data are 

selected at random and “bagged” or aggregated. Decision trees are then fitted to 

these subsets. At each classification node (i.e., branch) throughout this training, 

features are selected to continue at random, ending with an ensemble of decision-

makers more capable at accounting for input variance and therefore of more 

accurate NEE prediction.

Recurrent neural networks and LSTM (RNN)
A big-data extension of ANN, an RNN uses neural network architecture as 

outlined above with two significant differences. First, once input data pass through 

the hidden layer(s) of neurons, a portion of this processed data joins the next 

epoch’s input and re-enters the network (recurrence), super-tuning the neurons 

toward faster, more accurate prediction. Second, RNNs are capable of routing 

input through gated state storage of accessible memory. Long short-term memory

(LSTM) is one instance of this capability. With an LSTM implementation, states are 

preserved throughout training, allowing associations made at previous epochs to 

be available or “remembered” at the present one.
(NB: Before running each algorithm, data structures are divided into training and test sets randomly or by selection, dependent on the algorithm; pseudocode is not provided to benefit readership and inclusivity.)

This project evaluates the use of machine learning to meet the challenges of scalability and continuity in carbon flux 

monitoring and prediction. Today, the measurement of terrestrial gas fluxes is limited in spatial representation, 

evidenced by the over eight hundred sites capturing carbon information in a globally distributed yet patchy network, 

FLUXNET. Using the eddy covariance method, these sites compute net ecosystem exchange (NEE), a measure of the 

vectoring of carbon dioxide through their ecosystems. Though these sites deliver high quality, in situ data, they are 

inherently restricted to hyper-local observation, limiting accurate inferences toward a finer spatial resolution. 

Additionally, many ecoregions lack FLUXNET site representation, including the Pacific coast of South America, Central 

Asia and the Middle East, and the vegetation-rich archipelagos of the Sunda Shelf (see Fig. 1). These absences are 

based on sites’ geographic distribution and independent of ecosystem type.

1. In Situ Training Matrix (“In Situ”)
• 8 years of daily observations

• 130 FLUXNET sites contributing all variables

• 10 state variables and net ecosystem exchange (NEE)

2.  Remote Sensing Training Matrix (“RS”)
• 8 years of observations at 8-day temporal resolution

• 159 FLUXNET sites contributing NEE

• 7 remotely-sensed variables at 0.5-degree spatial resolution

• Reconstructed solar-induced fluorescence (RSIF); 

• Normalized Difference Vegetation Index (NDVI);

• Day and Night Land Surface Temperature (LST-Day, LST-Night);

• Air Temperature (AT);

• Surface Air Pressure (SurfPres);

• Cloud Fraction (CloudFrc);

NDVI, LST, AT, SurfPres, and CloudFrc courtesy MODIS and AIRS on EOS Terra 

(above right) and Aqua (left) provided by NASA GES DISC and NASA/USGS 

LPDAAC. RSIF courtesy Pierre Gentine (Columbia University). This project uses 

MATLAB as the primary tool for data preparation, analysis, and visualization. 

Iterating from the sparse data at FLUXNET sites, our team has taken a nonparametric 

approach to infer carbon flux at the global scale. This method allows for data gathering at a 

granularity unavailable to FLUXNET analysis alone.

The following summarizes this project’s workflow and objectives:

1. Assemble a training/testing data product of in situ FLUXNET measurements between 

2007 and 2014;

2. Assemble a training/testing data product integrating net ecosystem exchange with 

remotely sensed data of related variables covering 2007 through 2014; 

3. Train and evaluate four machine learning algorithms and protocols using both data 

products:

a. Find the best performer(s) at predicting NEE; 

b. Assess model sensitivities to specific input variables;

4. Determine the significance of differences in predictive power by passing the data 

products from (1) and (2) through machine learning algorithms to understand if these 

techniques are scalable-to-globe*;

5. Generate global maps of terrestrial carbon flux over the tested time period.*

*In progress

D. Algorithm Development

B. Method C. Data ProductsA. Groundwork

E. Validation and Testing

Performance Results
After analysis of first-attempt test statistics, a specific algorithm 

class was not found to be superior across all validation and testing 

methods, though ANN was found to be most consistent. Notable 

findings include the following:

1. In both k-fold validations, all algorithms performed well as 

indicated by high correlation values and low variance.
2. The result most applicable to the scalability objective of this 

project occurs in Fig. 5. ANN performed best with RS input with 

a correlation coefficient of 0.50, an acceptable preliminary 

value. 

3. LOO models underestimate variance. This is due to the fact that 

global models fail to capture complete variability across sites, a 

fault that can be mitigated by more rigorous site classification 

schemes (e.g., IGBP land cover grouping), additional remote 

sensing input layers, and including a higher number of 

monitoring sites contributing NEE during training.

Figs. 2-3: Full-record, out-of-sample test statistics for In Situ Training Matrix. In this context, “Correlation” provides a best estimate of performance.

Figs. 4-5: Full-record, out-of-sample test statistics for RS Training Matrix. In this context, “Correlation” provides a best estimate of performance.

Figs. 6-7: Example sensitivity analyses for In Situ state 

variables in standalone GPR and TBG models.
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Fig. 8: First-light sensitivity analyses 

for RS variables in all models.

Input Sensitivity Results
1. For In Situ variable analyses, air pressure, latent heat, 

and surface temperature contributed most to prediction 

and were weighted most heavily.

2. ANN displays the highest uniformity of response, with 

RSIF, LST-Day, and air temperature the highest 

contributors.
3. Sensitivity analyses between In Situ and RS agree, as 

many high responders match (RSIF is a proxy measure 

for latent heat).
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