
Super Security
Automated SCAP Security Compliance and Common

Vulnerabilities Evaluation
Jordan A. Caraballo-Vega1, George Rumney2, John Jasen2

1University of Puerto Rico at Humacao, Department of Mathematics
2High Performance Computing, NASA Goddard Space Flight Center, Mail Code 606.2

Objectives

It is NASA’s responsibility to secure and
protect its computer systems and
enormous amounts of data. Therefore,
in order to enhance the security for the
NASA Center for Climate Simulation
(NCCS), tools to continuously monitor
our High Performance Computing
systems were implemented.

Our aim is to: compare the efficiency of
different assessment tools, keep a time
trending record of the results, identify
specific rules that need to be addressed
urgently, and expand the use of this
automated SCAP through all NCCS
operational systems.

Background

Common Vulnerabilities and Exposures (CVE)- unique
identifiers that enable data exchange between security
products; specifically cybersecurity vulnerabilities.

OpenSCAP CIS-CAT

Figure 1. NCCS High Performance
Computational Environment.

Figure 2. Nagios Score Format

SCAP – protocol developed by NIST
designed to audit and assess a
target system with a defined set of
configuration requirements and
rules. The two main components
developed during this work are the
Baseline and Vulnerabilities audits.

Software

Method

Common Configuration Enumeration (CCE) - unique
identifiers to security-related system configuration
issues used in baseline audits.

Figure 3. Acronyms of files used to execute SCAP

They both include:
• Identifier Number – specific rule id

CCE-2715-1/ CVE-1999-0067
• Description – human readable description
• References – points sections of the documents

Figure 4. Example of an html CVE description

Extensible Configuration Checklist Description
Format (XCCDF) - a structured collection of security
configuration rules for some set of target systems.

Open Vulnerability and Assessment Language
(OVAL)- an effort to standardize how to assess and
report upon the machine state of computer systems.

Figure 5. Example of an html CVSS description

Common Vulnerability Scoring System
(CVSS)- a quantitative model to ensure
repeatable accurate measurement
while enabling users to see the
underlying vulnerability characteristics
that were used to generate the scores.

Perl scripts were written in order to execute and automate the audit process.
Bash scripts were implemented in order to report to Nagios, while Python
scripts were developed to produce the graphs.

Nagios is a passive check service that provides monitoring of all mission-
critical infrastructure components including applications, services, operating
systems, network protocols, systems metrics, and network infrastructure. The
data sent to Nagios include the score and the pass/failure of priority rules
(identified by the administrator of the system), and trend analysis of results
over time.

Figure 8. Diagram of Nagios infrastructure. At first, servers send the info to be
processed by Nagios. Date is processed and then delivered to the internet interface

References

• National Institute of Standards and Technology (2009). The Security Content
Automation Protocol (SCAP). Retrieved on June , 2016 from
https://scap.nist.gov/

• National Vulnerability Database. Retrieved on June, 2016 from https://nvd.nist.gov/
• Open Vulnerability and Assessment Language. Retrieved on June, 2016 from

http://oval.mitre.org/
• OpenSCAP. Retrieved on June, 2016 from https://www.open-scap.org/
• Center for Internet Security. Retrieved on June, 2016 from

https://benchmarks.cisecurity.org/

Acknowledgments

• NASA Minority University Research and Education Scholarship
• Thanks to George Rumney (mentor), John E. Jasen (mentor), Bennett
Samowich, Maximiliano Guillen, and Zed Pobre from the NASA Center
for Climate Simulations, for their continuous help during this work.
• Special thanks to Julie Rivera (Puerto Rican’s Advisor) and Stephen
Shinn (Chief Financial Officer) for their assistance.

Future Work

Future work will include the implementation of a database (PostgreSQL)
to organize the view of all the NCCS High Performance Computing
systems behavior, and also the expansion of this method to a wider
environment within the NCCS. Currently we are manually installing the
package of scripts in each operating system; so next step would be
developing Puppet rules in order to generalize the installation method
of the scripts depending on the environment.

OpenSCAP is an auditing tool that utilizes the Extensible
Configuration Checklist Description Format (XCCDF). It is based
on a framework of libraries to improve the accessibility of SCAP
and enhance the usability of the information it represents.

CIS-CAT tool to perform assessments of target systems according
to CIS Benchmark rules. By discovering any lack of conformance
to CIS Benchmarks, CIS-CAT offers a powerful tool for analyzing
and monitoring the effectiveness of internal security processes.

OpenSCAP

Baseline Audit

CIS-CAT

Vulnerabilities Audit

RHEL, SLES, Debian, and Ubuntu files work properly without any changes.
However, to audit CentOS, RHEL feed must be heavily modified. Previous work
done by Summer Intern Graham Mosley prove that this is possible by
replacing the file with the corresponding CentOS version, changing the
platform information, and signing keys to the CentOS equivalent on RHEL
feed.

OpenSCAP is the auditing tool used
to asses the vulnerability profiles for
every operating system used in this
work. OVAL files for RHEL, SLES,
Ubuntu, and Solaris were found.
Debian files are very recent, so
further tests need to be performed
in order to prove their accuracy.
After the audit is done, severities
(from low to high) are taken from
the resulting xml, or the online CVSS
principal page.

OpenSCAP CIS-CAT
Not supported in all

distributions
Needs Java to run

Faster Slower

Lacks of Benchmark files Does not have severities
information

Open source Not free

Figure 6 and 7. Comparison between OpenSCAP vs. CIS-CAT

For Baseline tests OpenSCAP supports
RHEL 6/7 and CentOS 6/7. On the other
hand, CIS-Cat tool supports SLES 11/12,
CentOS 6/7, RHEL 6/7, FreeBSD, Ubuntu
14/16, Solaris and Debian 8.

Figure 9. Operating systems supported by OpenSCAP based
on the availability of benchmark files: CentOS and RHEL.

Figure 10. Operating systems supported by CIS-
CAT from upper center to right: SLES, CentOS,
Debian, FreeBSD, Solaris, Ubuntu, and RHEL.

OpenSCAP

Figure 11. Operating systems logos of found OVAL
files: SLES, Debian, Solaris, and Ubuntu. CentOS
uses RHEL modified feed

General Procedure

Results & Conclusions

• Create Directories

• Search for files

• Parse config file

Validate

• Select Tool

• Select OS

• Run command

Assess
• Parse XML file

• Search for severities

• Create and edit
report files

Report

Figure 12. Diagram of script procedures

• Sum failed tests and
severities
• Check critical
CCE/CVE result
• Get total score
• Produce Last Run File
• Edit/Create State File
• Store date and result
on Trend File

Nagios Procedure

Method

A bash script named CopyFiles is executed in order to locate files in their
respective folders. This will set in place the cron job that was previously
configured to assess the system daily. After this is done, a check script is
executed to verify the results of the file age function, score, and
identified critical rules. Scores are reported to the Nagios interface.

Operating Systems Tested

Figure 14 (A) Table summarizes the stage of the
work for each OS. Green for ready, yellow for on
going, red for further needs. Figure 14 (B) shows

the Nagios HTML interface.

BA

Figure 15 (A) shows the behavior of Centos 6 Baseline audit with and without auditing rules;
while Figure 15 (B) represents a Vulnerabilities audit before and after updating the system. The

higher the score in the baseline audit, the safer the system is. However, vulnerabilities audits
state that the higher the result, the more vulnerable the system will be.

A B

As it is shown in the graphs, scores can change dramatically, and for that
reason systems need to be assessed continuously. Therefore, this method
will facilitate systems administrators effort to maintain their server secure
and monitored through time.

Figure 13. Diagram of Nagios Procedure

