
MPI & SLURM
Reid Ormseth

3 Aug 23

Running an MPI job
• How do you run a job on a basic cluster?
$ module load openmpi/4.1.4
$ cat machines
n1
n1
n2 slots=2
n3 slots=2
$ mpirun -np 6 --hostfile machines --prefix $MPIHOME ./a.out
Hello world from processor n1, rank 0 out of 6 processors
Hello world from processor n1, rank 1 out of 6 processors
Hello world from processor n3, rank 5 out of 6 processors
Hello world from processor n2, rank 2 out of 6 processors
Hello world from processor n2, rank 3 out of 6 processors
Hello world from processor n3, rank 4 out of 6 processors

• -np : Number of Processors

• --hostfile : Name of file with a list of nodes
• May be specified multiple times, or with “slots=#” for

multi-core

• --prefix : If MPI is not in your default env, tells
mpirun where to find the MPI executables and
libraries on the remote machines.

• Uses SSH to start processes on compute nodes
• You must have password-less SSH keys set up.
• The other processes WILL NOT pick up current env

variables (like $CWD).
• It will look in your home directory and only find your

exe & MPI if it is a system default, or you use –prefix.
• You can use -x to pass env variables.
• Use full paths, this example only works in your home

dir!

Running an MPI Job with SLURM
• Simplified with ‘srun’:
$ salloc -N 3 -n 6
salloc: Granted job allocation 136
$ module load openmpi/4.1.4
$ srun --mpi=pmix ./a.out
Hello world from processor n3, rank 5 out of 6 processors
Hello world from processor n2, rank 3 out of 6 processors
Hello world from processor n2, rank 4 out of 6 processors
Hello world from processor n1, rank 0 out of 6 processors
Hello world from processor n1, rank 1 out of 6 processors
Hello world from processor n1, rank 2 out of 6 processors

$ module load comp/intel/2021.7.0 mpi/impi/2021.7.0
$ file `which mpirun`
/usr/local/intel/oneapi/2021/mpi/2021.7.0/bin/mpirun: POSIX
shell script, ASCII text executable
$ grep -A 1 SLURM `which mpirun`
 # SLURM
 if [-n "$SLURM_JOBID"]; then
 export I_MPI_HYDRA_BOOTSTRAP=slurm

• SLURM Assigns nodes to your job as soon as
you start a job.

• Using ‘srun’ automatically detects the number
of processes, nodes assigned, etc.

• You can frequently still use ‘mpirun’, which
will transparently call ‘srun’.
• Using mpirun helps portability to non-SLURM centers

• SRUN attempts to preserve your environment.
• srun leverages ‘slurmstepd’ on every compute node

to launch jobs.
• srun will capture your environment at time of

submission and pass to all child processes.
• Slurmstepd will configure things such as C-groups or

attaching to the correct GPU.
• If you load a module, those applications & libs will be

available to all processes.
• You can safely use relative paths in your application.

Three Ways to Run in SLURM
• salloc – runs a single command or gives you an interactive shell on a compute node:
[rormseth@discover21 h]$ salloc -N 1 --gres=gpu:4 --constraint=rome --partition=gpu_a100
salloc: Pending job allocation 20283361
salloc: job 20283361 queued and waiting for resources
salloc: job 20283361 has been allocated resources
salloc: Granted job allocation 20283361
salloc: Waiting for resource configuration
salloc: Nodes warpa008 are ready for job
[rormseth@warpa008 h]$

• sbatch – submits a script to run in the background:
[rormseth@discover21 h]$ sbatch hello.slurm
Submitted batch job 20283014
[rormseth@discover21 h]$ ls
20283014.o 20283014.e

• srun/mpirun – Launches parallel tasks, usually executed inside an ‘salloc’ or ‘sbatch’.

• Salloc is good for short, interactive access to compute nodes, particularly for compiling or post-
processing. Otherwise, we highly recommend always using ’sbatch’.

Process Management
• By default, SLURM will allocate one task to every processor on a node

• -N, --nodes
• -n, --ntasks: how many total MPI processes to start

• Note that performance may be improved by not using all CPUs on a node.
• --ntasks-per-node

• Can be used to allocate more memory by running fewer tasks than processors on node.
• OpenMP / MPI hybrid mode:

• OpenMP is a programming technique to allow parallel processing via multiple threads in one process.
• OpenMP is only single node, so need to use in conjunction with MPI
• -N, -n, --cpus-per-task, plus set OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
• Hybrid generally provides better performance than MPI alone at same scale.

• Many ways to specify the same result:
#SBATCH -G 48 #SBATCH --gres=gpu:48
#SBATCH --ntasks 48 #SBATCH -n 48
#SBATCH -N 12 #SBATCH –ntasks-per-node 4
#SBATCH --constraint=rome #SBATCH --constraint=rome
#SBATCH --partition=gpu_a100 #SBATCH --partition=gpu_a100

Best Practices
• Always use sbatch, not ‘salloc’ or ‘srun’ to submit jobs, so you have a history of

what you ran.
• Don’t use cmd line options to sbatch, use ”#SBATCH –option” in the script

• Although sbatch will pull your current env (i.e., if you did a “module load intel”),
always always put that in the batch so you can reproduce.
• Start with a “module purge” in your sbatch script
• Specify the version of compiler & MPI in module commands as the default will change.

• Use total number of tasks, not # of nodes.
• Use descriptive job names.
• Job output/error files with unique names- embed job ID into that filename.
• Drop an “env” into the top of your scripts, after you load modules, etc
• Throw a “-x” on the top of your shebang in sbatch scripts.
• Always specify a runtime limit

Best Practices
$ cat ihello.slurm
#!/bin/bash -x
#SBATCH -J intelTest
#SBATCH -n 6
#SBATCH -o %x.%j.o
#SBATCH -e %x.%j.e
#SBATCH --time=1:00:00

module purge
module load comp/intel/2021.7.0 mpi/impi/2021.7.0
env

EXE=‘./intelhello’
srun --mpi=pmix $EXE

$ sbatch ihello.slurm
Submitted batch job 23543249
$ tail -n 3 intelTest.23.e
+ return 0
+ echo ===================
+ srun --mpi=pmix ./intelhello

Packing & Replicated Jobs
• To run multiple jobs on a single node, use the Packable queue.

• You will only share a node with other jobs you submit, not other users.
#SBATCH –p packable

• Job Arrays are for running large numbers of identical jobs.
• This is more efficient than individual jobs, and frequently combined with “packable”.

$ cat runarray.slurm
#!/bin/bash -x
#SBATCH -J runarray
#SBATCH –p packable
#SBATCH -n 1
#SBATCH --array=0-6:2
#SBATCH -o %x.%A.%a.o
#SBATCH -e %x.%A.%a.e

env
module load impi intel
./myapp -input file.${SLURM_ARRAY_TASK_ID}
$ sbatch runarray.slurm
$ ls
file.0 file.4 runarray.25.0.e runarray.25.2.e runarray.25.4.e runarray.25.6.e runarray.slurm
file.2 file.6 runarray.25.0.o runarray.25.2.o runarray.25.4.o runarray.25.6.o

Tips and Tools
• Log onto a node with a running job:
[rormseth@discover23 ~]$ srun --jobid=40652831 --pty bash

[rormseth@borgn181 ~]$ top

• To run on a specific type of node
#SBATCH --constraint=cas

Architecture SLURM
Constraint

CPUs/GPUs Memory per
CPU/GPU

Memory per
Node*

Skylake sky 40 CPUs (36 usable) 4 GB / CPU 192 GB

Cascade Lake cas 48 CPUs (46 usable) 4 GB / CPU 192 GB

AMD Rome rome 48 CPUs + 4 GPUs 100 GB / GPU 512 GB

AMD Milan mil 128 CPUs 4 GB / CPU 512 GB

* This reflects physical memory, some amount is reserved by SLURM for OS, filesystem & overhead.

Recommended Tools
• Tests every SysAdmin & Power User should have close at hand:
• mpihello

• C, C++ & Fortran examples available.
• Used to test compiler & mpi config, user environment is correct, SLURM syntax and requests, job

startup, etc.

• OSU MPI benchmarks (1)

• osu_lat: Will test the latency between two nodes
• osu_bw: Will test maximum bandwidth between two nodes
• osu_mbw: Will test maximum bandwidth between a large number of nodes

1. https://mvapich.cse.ohio-state.edu/benchmarks/

Questions?

MPI Startup
• MPI Job startup and a basic ‘mpirun’
• srun vs mpirun

• mpirun uses SSH, srun uses slurmstepd
• mpirun needs details on node count,

machinefile, etc., srun pulls from SLURM env
• Most “mpirun” implementations are scripts

that transparently call srun

• sbatch vs srun vs salloc
• Slurmd vs Slurmstepd, why slurmstepd?

• Allow user onto a node (we don’t want to
allow a user to SSH to someone else’s nodes)

• Populate their environment to all nodes, and
not a fresh login shell

• Create custom C-groups for a step to run inside
of

• How to open another shell on a node with my
job to watch it?

• Good tests every admin/poweruser should
have close at hand
• mpihello
• OSU MPI benchmarks, osu_lat, osu_bw,

osu_mbw

• Processors vs Tasks vs Nodes
• Need more memory?

• MPI vs Hybrid OpenMP/MPI

• Job Packing
• SLURM job history and metrics

• What jobs did I run?
• Which succeeded and failed?
• Where did they run?

Best Practices
• Always use sbatch, not ‘salloc’ or ‘srun’ directly, so you have a history of what you

ran.
• Don’t use cmd line options to sbatch, use ”#SBATCH –option” in the script

• Although sbatch will pull your current env (i.e., if you did a “module load intel”),
always always put that in the batch so you can reproduce.
• Use total number of tasks, not # of nodes.
• Use descriptive job names.
• Job output/error files with unique names- embed job ID into that filename.
• Drop an “env” into the top of your scripts, after you load modules, etc
• Throw a “+x” on the top of your shebang in sbatch scripts.
• Always specify a runtime limit

