MPIl & SLURM

Reid Ormseth
3 Aug 23

Running an MPI job

* How do you run a job on a basic cluster?

$ module load openmpi/4.1.4

$ cat machines

nl
nl
n2 slots=2
n3 slots=2

$ mpirun -np 6 --hostfile machines --prefix $MPIHOME ./a.out

Hello
Hello
Hello
Hello
Hello
Hello

world
world
world
world
world
world

from
from
from
from
from
from

processor
processor
processor
processor
processor
processor

nl,
nl,
n3,
n2,
n2,
n3,

rank
rank
rank
rank
rank
rank

0

A W N UV R

out
out
out
out
out
out

of 6 processors
of 6 processors
of 6 processors
of 6 processors
of 6 processors
of 6 processors

(o)) Ie) BN @)}

-np : Number of Processors

--hostfile : Name of file with a list of nodes

* May be specified multiple times, or with “slots=#" for
multi-core

--prefix : If MPl is not in your default eny, tells
mpirun where to find the MPI executables and
libraries on the remote machines.

Uses SSH to start processes on compute nodes

* You must have password-less SSH keys set up.

* The other processes WILL NOT pick up current env
variables (like SCWD).

* It will look in your home directory and only find your
exe & MPI if it is a system default, or you use —prefix.

* You can use -x to pass env variables.

» Use full paths, this example only works in your home
dir!

Running an MPI Job with SLURM

e Simplified with ‘srun’:
$ salloc -N 3 -n 6

salloc:

$ srun --mpi=pmix ./a.out

Hello
Hello
Hello
Hello
Hello
Hello

world
world
world
world
world
world

from
from
from
from
from
from

processor
processor
processor
processor
processor
processor

Granted job allocation
$ module load openmpi/4.1.4

n3,

n2,
nl,
nl,
nl,

136

rank
rank
rank
rank
rank
rank

N PO P W WU

out
out
out
out
out
out

of
of
of
of
of
of

A OO O O O

processors
processors
processors
processors
processors
processors

$ module load comp/intel/2021.7.0 mpi/impi/2021.7.0
$ file “which mpirun”

/usr/local/intel/oneapi/2021/mpi/2021.7.0/bin/mpirun:

shell script, ASCII text executable
$ grep -A 1 SLURM “which mpirun®

SLURM
if [-n
export I_MPI_HYDRA_BOOTSTRAP=slurm

"$SLURM_JOBID"

]; then

POSIX

* SLURM Assigns nodes to your job as soon as
you start a job.

Using ‘srun’ automatically detects the number
of processes, nodes assigned, etc.

You can frequently still use ‘mpirun’, which
will transparently call ‘srun’.

e Using mpirun helps portability to non-SLURM centers

SRUN attempts to preserve your environment.

* srun leverages ‘slurmstepd’ on every compute node
to launch jobs.

* srun will capture your environment at time of
submission and pass to all child processes.

e Slurmstepd will configure things such as C-groups or
attaching to the correct GPU.

* If you load a module, those applications & libs will be
available to all processes.

* You can safely use relative paths in your application.

Three Ways to Run in SLURM

* salloc —runs a single command or gives you an interactive shell on a compute node:

[rormseth@discover21l h]$ salloc -N 1 --gres=gpu:4 --constraint=rome --partition=gpu_al00
salloc: Pending job allocation 20283361

salloc: job 20283361 queued and waiting for resources

salloc: job 20283361 has been allocated resources

salloc: Granted job allocation 20283361

salloc: Waiting for resource configuration

salloc: Nodes warpa@@8 are ready for job

[rormseth@warpa®e8 h]l$

e sbatch — submits a script to run in the background:

[rormseth@discover21l h]$ sbatch hello.slurm
Submitted batch job 20283014
[rormseth@discover2l h]$ 1s

20283014.0 20283014 .e

* srun/mpirun — Launches parallel tasks, usually executed inside an ‘salloc’ or ‘sbatch’.

 Salloc is good for short, interactive access to compute nodes, particularly for compiling or post-
processing. Otherwise, we highly recommend always using 'sbatch’.

Pro

cess Management

* By default, SLURM will allocate one task to every processor on a node

-N, --nodes
-n, --ntasks: how many total MPI processes to start

* Note that performance may be improved by not using all CPUs on a node.

* Can

* Ope

--ntasks-per-node
be used to allocate more memory by running fewer tasks than processors on node.
nMP / MPI hybrid mode:

OpenMP is a programming technique to allow parallel processing via multiple threads in one process.
OpenMP is only single node, so need to use in conjunction with MPI

-N, -n, --cpus-per-task, plus set OMP_NUM_THREADS=SSLURM_CPUS_PER_TASK

Hybrid generally provides better performance than MPI alone at same scale.

* Many ways to specify the same result:

#SBATCH
#SBATCH
#SBATCH
#SBATCH
#SBATCH

-G 48 #SBATCH --gres=gpu:48
--ntasks 48 #SBATCH -n 48

-N 12 #SBATCH -ntasks-per-node 4
--constraint=rome #SBATCH --constraint=rome

--partition=gpu_aleo #SBATCH --partition=gpu_aleo

Best Practices

* Always use sbatch, not ‘salloc’ or ‘srun’ to submit jobs, so you have a history of
what you ran.

* Don’t use cmd line options to sbatch, use "#SBATCH —option” in the script

» Although sbatch will pull your current env (i.e., if you did a “module load intel”),
always always put that in the batch so you can reproduce.

e Start with a “module purge” in your sbatch script
» Specify the version of compiler & MPI in module commands as the default will change.

Use total number of tasks, not # of nodes.

Use descriptive job names.

Job output/error files with unique names- embed job ID into that filename.
* Drop an “env” into the top of your scripts, after you load modules, etc

* Throw a “-x” on the top of your shebang in sbatch scripts.

* Always specify a runtime limit

Best Practices

$ cat ihello.slurm
#!/bin/bash -x

#SBATCH -] intelTest
#SBATCH -n 6

#SBATCH -0 %X.%j.0
#SBATCH -e %x.%j.e
#SBATCH --time=1:00:00

module purge

module load comp/intel/2021.7.0 mpi/impi/2021.7.0
env

EXE=°./intelhello’
srun --mpi=pmix $EXE

$ sbatch ihello.slurm
Submitted batch job 23543249

$ tail -n 3 intelTest.23.e

+ return 0

+ echo ===================

+ srun --mpi=pmix ./intelhello

Packing & Replicated Jobs

* To run multiple jobs on a single node, use the Packable queue.
* You will only share a node with other jobs you submit, not other users.
#SBATCH -p packable

* Job Arrays are for running large numbers of identical jobs.

* This is more efficient than individual jobs, and frequently combined with “packable”.
$ cat runarray.slurm
#!/bin/bash -x
#SBATCH -J runarray
#SBATCH -p packable
#SBATCH -n 1
#SBATCH --array=0-6:2
#SBATCH -0 %x.%A.%a.o
#SBATCH -e %x.%A.%a.e

env

module load impi intel

./myapp -input file.${SLURM_ARRAY_TASK ID}

$ sbatch runarray.slurm

$ 1s

file.® file.4 runarray.25.0.e runarray.25.2.e runarray.25.4.e runarray.25.6.e runarray.slurm
file.2 file.6 runarray.25.0.0 runarray.25.2.0 runarray.25.4.0 runarray.25.6.0

Tips and Tools

* Log onto a node with a running job:
[rormseth@discover23 ~]$ srun --jobid=40652831 --pty bash
[rormseth@borgnl18l ~]$% top

* To run on a specific type of node

#SBATCH --constraint=cas

Architecture SLURM CPUs/GPUs Memory per Memory per
Constraint CPU/GPU Node*

Skylake 40 CPUs (36 usable) 4GB/ CPU 192 GB
Cascade Lake cas 48 CPUs (46 usable) 4 GB/CPU 192 GB
AMD Rome rome 48 CPUs + 4 GPUs 100 GB / GPU 512 GB
AMD Milan mil 128 CPUs 4 GB / CPU 512 GB

* This reflects physical memory, some amount is reserved by SLURM for OS, filesystem & overhead.

Recommended Tools

* Tests every SysAdmin & Power User should have close at hand:

* mpihello

e C, C++ & Fortran examples available.

* Used to test compiler & mpi config, user environment is correct, SLURM syntax and requests, job
startup, etc.

e OSU MPI benchmarks (1)

e osu_lat: Will test the latency between two nodes
e osu_bw: Will test maximum bandwidth between two nodes
e osu_mbw: Will test maximum bandwidth between a large number of nodes

1. https://mvapich.cse.ohio-state.edu/benchmarks/

Questions?

MPI Startup

MPI Job startup and a basic ‘mpirun’

srun vs mpirun
* mpirun uses SSH, srun uses slurmstepd

* mpirun needs details on node count,
machinefile, etc., srun pulls from SLURM env

* Most “mpirun” implementations are scripts
that transparently call srun
sbatch vs srun vs salloc

Slurmd vs Slurmstepd, why slurmstepd?

* Allow user onto a node (we don’t want to
allow a user to SSH to someone else’s nodes)

* Populate their environment to all nodes, and
not a fresh login shell

* Create custom C-groups for a step to run inside
of

How to open another shell on a node with my
job to watch it?

Good tests every admin/poweruser should
have close at hand

* mpihello

* OSU MPI benchmarks, osu_lat, osu_bw,
osu_mbw

Processors vs Tasks vs Nodes
Need more memory?

MPI vs Hybrid OpenMP/MPI
Job Packing

SLURM job history and metrics
 What jobs did | run?
e Which succeeded and failed?
* Where did they run?

Best Practices

* Always use sbatch, not ‘salloc’ or ‘srun’ directly, so you have a history of what you
ran.

* Don’t use cmd line options to sbatch, use "#SBATCH —option” in the script

» Although sbatch will pull your current env (i.e., if you did a “module load intel”),
always always put that in the batch so you can reproduce.

Use total number of tasks, not # of nodes.

* Use descriptive job names.

Job output/error files with unique names- embed job ID into that filename.
* Drop an “env” into the top of your scripts, after you load modules, etc

* Throw a “+x” on the top of your shebang in sbatch scripts.

* Always specify a runtime limit

