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Running an MPI job

* How do you run a job on a basic cluster?

$ module load openmpi/4.1.4

$ cat machines
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$ mpirun -np 6 --hostfile machines --prefix $MPIHOME ./a.out
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-np : Number of Processors

--hostfile : Name of file with a list of nodes

* May be specified multiple times, or with “slots=#" for
multi-core

--prefix : If MPl is not in your default eny, tells
mpirun where to find the MPI executables and
libraries on the remote machines.

Uses SSH to start processes on compute nodes

* You must have password-less SSH keys set up.

* The other processes WILL NOT pick up current env
variables (like SCWD).

* It will look in your home directory and only find your
exe & MPI if it is a system default, or you use —prefix.

* You can use -x to pass env variables.

» Use full paths, this example only works in your home
dir!



Running an MPI Job with SLURM

e Simplified with ‘srun’:
$ salloc -N 3 -n 6

salloc:

$ srun --mpi=pmix ./a.out
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Granted job allocation
$ module load openmpi/4.1.4
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$ module load comp/intel/2021.7.0 mpi/impi/2021.7.0
$ file “which mpirun”

/usr/local/intel/oneapi/2021/mpi/2021.7.0/bin/mpirun:

shell script, ASCII text executable
$ grep -A 1 SLURM “which mpirun®

# SLURM
if [ -n
export I_MPI_HYDRA_BOOTSTRAP=slurm

"$SLURM_JOBID"

]; then

POSIX

* SLURM Assigns nodes to your job as soon as
you start a job.

Using ‘srun’ automatically detects the number
of processes, nodes assigned, etc.

You can frequently still use ‘mpirun’, which
will transparently call ‘srun’.

e Using mpirun helps portability to non-SLURM centers

SRUN attempts to preserve your environment.

* srun leverages ‘slurmstepd’ on every compute node
to launch jobs.

* srun will capture your environment at time of
submission and pass to all child processes.

e Slurmstepd will configure things such as C-groups or
attaching to the correct GPU.

* If you load a module, those applications & libs will be
available to all processes.

* You can safely use relative paths in your application.



Three Ways to Run in SLURM

* salloc —runs a single command or gives you an interactive shell on a compute node:

[rormseth@discover21l h]$ salloc -N 1 --gres=gpu:4 --constraint=rome --partition=gpu_al00
salloc: Pending job allocation 20283361

salloc: job 20283361 queued and waiting for resources

salloc: job 20283361 has been allocated resources

salloc: Granted job allocation 20283361

salloc: Waiting for resource configuration

salloc: Nodes warpa@@8 are ready for job

[rormseth@warpa®e8 h]l$

e sbatch — submits a script to run in the background:

[rormseth@discover21l h]$ sbatch hello.slurm
Submitted batch job 20283014
[rormseth@discover2l h]$ 1s

20283014.0 20283014 .e

* srun/mpirun — Launches parallel tasks, usually executed inside an ‘salloc’ or ‘sbatch’.

 Salloc is good for short, interactive access to compute nodes, particularly for compiling or post-
processing. Otherwise, we highly recommend always using 'sbatch’.



Pro

cess Management

* By default, SLURM will allocate one task to every processor on a node

-N, --nodes
-n, --ntasks: how many total MPI processes to start

* Note that performance may be improved by not using all CPUs on a node.

* Can

* Ope

--ntasks-per-node
be used to allocate more memory by running fewer tasks than processors on node.
nMP / MPI hybrid mode:

OpenMP is a programming technique to allow parallel processing via multiple threads in one process.
OpenMP is only single node, so need to use in conjunction with MPI

-N, -n, --cpus-per-task, plus set OMP_NUM_THREADS=SSLURM_CPUS_PER_TASK

Hybrid generally provides better performance than MPI alone at same scale.

* Many ways to specify the same result:

#SBATCH
#SBATCH
#SBATCH
#SBATCH
#SBATCH

-G 48 #SBATCH --gres=gpu:48
--ntasks 48 #SBATCH -n 48

-N 12 #SBATCH -ntasks-per-node 4
--constraint=rome #SBATCH --constraint=rome

--partition=gpu_aleo #SBATCH --partition=gpu_aleo



Best Practices

* Always use sbatch, not ‘salloc’ or ‘srun’ to submit jobs, so you have a history of
what you ran.

* Don’t use cmd line options to sbatch, use "#SBATCH —option” in the script

» Although sbatch will pull your current env (i.e., if you did a “module load intel”),
always always put that in the batch so you can reproduce.

e Start with a “module purge” in your sbatch script
» Specify the version of compiler & MPI in module commands as the default will change.

Use total number of tasks, not # of nodes.

Use descriptive job names.

Job output/error files with unique names- embed job ID into that filename.
* Drop an “env” into the top of your scripts, after you load modules, etc

* Throw a “-x” on the top of your shebang in sbatch scripts.

* Always specify a runtime limit



Best Practices

$ cat ihello.slurm
#!/bin/bash -x

#SBATCH -] intelTest
#SBATCH -n 6

#SBATCH -0 %X.%j.0
#SBATCH -e %x.%j.e
#SBATCH --time=1:00:00

module purge

module load comp/intel/2021.7.0 mpi/impi/2021.7.0
env

EXE=°./intelhello’
srun --mpi=pmix $EXE

$ sbatch ihello.slurm
Submitted batch job 23543249

$ tail -n 3 intelTest.23.e

+ return 0

+ echo ===================

+ srun --mpi=pmix ./intelhello



Packing & Replicated Jobs

* To run multiple jobs on a single node, use the Packable queue.
* You will only share a node with other jobs you submit, not other users.
#SBATCH -p packable

* Job Arrays are for running large numbers of identical jobs.

* This is more efficient than individual jobs, and frequently combined with “packable”.
$ cat runarray.slurm
#!/bin/bash -x
#SBATCH -J runarray
#SBATCH -p packable
#SBATCH -n 1
#SBATCH --array=0-6:2
#SBATCH -0 %x.%A.%a.o
#SBATCH -e %x.%A.%a.e

env

module load impi intel

./myapp -input file.${SLURM_ARRAY_TASK ID}

$ sbatch runarray.slurm

$ 1s

file.® file.4 runarray.25.0.e runarray.25.2.e runarray.25.4.e runarray.25.6.e runarray.slurm
file.2 file.6 runarray.25.0.0 runarray.25.2.0 runarray.25.4.0 runarray.25.6.0



Tips and Tools

* Log onto a node with a running job:
[rormseth@discover23 ~]$ srun --jobid=40652831 --pty bash
[rormseth@borgnl18l ~]$% top

* To run on a specific type of node

#SBATCH --constraint=cas

Architecture SLURM CPUs/GPUs Memory per Memory per
Constraint CPU/GPU Node*

Skylake 40 CPUs (36 usable) 4GB/ CPU 192 GB
Cascade Lake cas 48 CPUs (46 usable) 4 GB/CPU 192 GB
AMD Rome rome 48 CPUs + 4 GPUs 100 GB / GPU 512 GB
AMD Milan mil 128 CPUs 4 GB / CPU 512 GB

* This reflects physical memory, some amount is reserved by SLURM for OS, filesystem & overhead.



Recommended Tools

* Tests every SysAdmin & Power User should have close at hand:

* mpihello

e C, C++ & Fortran examples available.

* Used to test compiler & mpi config, user environment is correct, SLURM syntax and requests, job
startup, etc.

e OSU MPI benchmarks (1)

e osu_lat: Will test the latency between two nodes
e osu_bw: Will test maximum bandwidth between two nodes
e osu_mbw: Will test maximum bandwidth between a large number of nodes

1. https://mvapich.cse.ohio-state.edu/benchmarks/



Questions?






MPI Startup

MPI Job startup and a basic ‘mpirun’

srun vs mpirun
* mpirun uses SSH, srun uses slurmstepd

* mpirun needs details on node count,
machinefile, etc., srun pulls from SLURM env

* Most “mpirun” implementations are scripts
that transparently call srun
sbatch vs srun vs salloc

Slurmd vs Slurmstepd, why slurmstepd?

* Allow user onto a node (we don’t want to
allow a user to SSH to someone else’s nodes)

* Populate their environment to all nodes, and
not a fresh login shell

* Create custom C-groups for a step to run inside
of

How to open another shell on a node with my
job to watch it?

Good tests every admin/poweruser should
have close at hand

* mpihello

* OSU MPI benchmarks, osu_lat, osu_bw,
osu_mbw

Processors vs Tasks vs Nodes
Need more memory?

MPI vs Hybrid OpenMP/MPI
Job Packing

SLURM job history and metrics
 What jobs did | run?
e Which succeeded and failed?
* Where did they run?



Best Practices

* Always use sbatch, not ‘salloc’ or ‘srun’ directly, so you have a history of what you
ran.

* Don’t use cmd line options to sbatch, use "#SBATCH —option” in the script

» Although sbatch will pull your current env (i.e., if you did a “module load intel”),
always always put that in the batch so you can reproduce.

Use total number of tasks, not # of nodes.

* Use descriptive job names.

Job output/error files with unique names- embed job ID into that filename.
* Drop an “env” into the top of your scripts, after you load modules, etc

* Throw a “+x” on the top of your shebang in sbatch scripts.

* Always specify a runtime limit



