
Dr. Craig Pelissier at the NASA Center for Climate Simulation (NCCS) has
developed code for high performance Gaussian Process Regression (GPR). A
graphical representation of a Gaussian process is shown in Figure 0. We have
applied this GPR code with the Noah-MP hydrology model. The GPR is trained to
predict the difference between the hydrology model and soil moisture observations
using the model states and atmospheric conditions all measured at FluxNet tower
sites (Figures 1 & 2). This is a ML-based data assimilation scheme that can
update model structure (not just the model’s state).

The GPR prediction is merged with Noah-MP in two distinct ways. Post-processing is
an application of ML to predict differences between a time series of dynamic model
simulations and time series of observations. Post processing allows us to extract that
information from observations to improve model predictions, but it doesn’t tell us
what is wrong with our dynamical systems models. To address this harder problem
of learning deficiencies in the original model we apply the GPR prediction
dynamically to the model state at each time step.

The results are updated model-simulated variables that better match the future
observation data, assuming that the GPR has identified trends in the model error,
perhaps due to missing model inputs or unmodeled processes.

A typical downside of GPR for machine learning is that they usually take a long
time to train. To overcome this obstacle our code uses Sparse Pseudo Input GPR
[14], which speeds up training by orders of magnitude. We run the GPR code on
the NCCS Discover, and training time is usually just a matter of seconds.

Project Data for Land Surface Modeling Experiments
We evaluated predictive performance of the approach described for Soil Moisture.
Model input data was aggregated from NLDAS. Model performance was assessed
against observations at 10 FluxNet Towers with consistent data sets.
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We test a method for hydrologic modeling predictions of soil moisture with a hybrid
machine learning (ML) + physics-based modeling approach. This method is an
alternative to data assimilation, addresses a grand challenge of integrating machine
learning with physics, and has an added benefit in that it makes dynamic corrections
to model structural error. Dr. Pelissier has developed a parallelized machine
learning code for Gaussian Process Regression (GPR) which is used for the ML
component, and we use the Noah-Multiparameter (Noah-MP) land surface model as
the physics-based component of this hybrid. We test this method over annual soil
moisture cycles at FluxNet towers with high quality observations. The results show
that this hybrid approach significantly improves the out-of-sample soil moisture
predictions as compared to those made by a calibrated Noah-MP model. We also
compare the GPR with ‘traditional’ data assimilation. We ran the Noah-MP model
with an Ensemble Kalman Filter (EnKF). The results show a similar performance
improvement between GPR and EnKF when run in sample, but EnKF provides no
benefit when making predictions after only a few time steps following an
observation. Our results show that this hybrid approach continues improving model
predictions even without soil moisture observations. This has significance for
improving the efficiency of satellite data assimilation into large scale hydrologic
models.

Machine Learning has been a part of Hydrological modeling since at least the
early 1990s [1-3], but is emerging as an important method to make predictions and
understand the hydrologic cycle [4]. A major concern is that data driven predictions
lack the adaptability of physically based models. Our approach leverages the
complementary aspects both of physically based models and machine learning,
which is absolutely critical for the future of hydrology. Kratzert et al. [5]
showed that machine learning can produce, on average, better streamflow
predictions in ungauged basins than traditional Hydrology models can produce in
gauged basins. To achieve this, Kratzert et al. used a set of catchment attributes
derived from a combination of remote sensing, soils maps, and climate model output
(known as the ‘CAMELS’ dataset; [6]) as inputs to allow his ML algorithm to
differentiate between different types of catchment behaviors. This result means that
there is sufficient information in the remote sensing and climatic data record to
differentiate between at least a significant portion of diverse catchment-specific
rainfall-runoff behaviors.

Data Assimilation
Data assimilation (DA) is the most common method for using satellite data to
improve large-scale hydrological models like NASA-LIS [7], but has several
limitations:
• DA only updates the model state (or state and parameters [8]), and does not help

mitigate model structural errors or errors due to missing inputs.

• DA requires estimates of uncertainty distributions over the model and
observations, which can be difficult to estimate, can change over time and in
different conditions, and if mis-specified can lead to significant information loss
[9].

• DA is typically only useful for mitigating random errors, and the assimilated
observation data must be mapped to the model’s climatology [10].

• Kumar et al. [11] identified major unmodeled process in the current generation of
hydrological models contained in NASA-LIS, and noted that assimilation of data
associated with unmodeled processes can produce spurious results. These
limitations apply even to modern data assimilation techniques [12].

We propose that ML provides a direct approach to merge data with
models to account for model structural uncertainty, model bias, missing
inputs, and unmodeled processes.

Our results demonstrate a model performance improvement with the GPR for both
post processing (Figure 3) and dynamic state updating (Figure 4). These results are
a proof of concept, that we can use machine learning for non-parametric data
assimilation in hydrological models. This is a significant step forward for
hydrological prediction, and for the integration of machine learning in dynamical
systems modeling.

This work has significance to gain a deeper understanding of hydrologic processes
in general. We see that the GPR ‘learns’ the difference between soil moisture
observation and the predictions made by an operational land surface model. This
implies that there are processes that occur in nature that are not represented in
Noah-MP, which in turn implies that there is opportunity to improve our
understanding of hydrologic process and the physically-based dynamic model itself.

Further work

• Extend this procure to the rest of the FluxNet tower site and other high quality
hydrological data sets, including the CAMELS catchments.

• Using the Machine Learning to make predictions across sites. While it is relatively
straight forward to use data collected at a site to make predictions at that site, it
would be valuable to be able to make predictions at one site with data collected
at a different site. For this to work the GPR will have to learn hydrologic model
structural error that is not site specific.

• Use Machine Learning to assimilate remote sending data into land surface model
predictions. This is a direct extension of the bullet listed above. Remote sensing
data necessarily represents a gridded area of Earth’s surface, so it is necessary
that the GPR to learn geo-spatially averaged model structural error.

• An additional path for future research is using the dynamic correction factor to
study hydrologic nonstationarity, which is a challenge for long term water
resources management and hydrological forecasting. Figure 4 shows a map of
how the surface water hydrologic response to precipitation is changing across the
united states from 1979 – 2004. This future work will quantify and model
nonstationary (i.e., changing) hydrologic behaviors of large scales (continental
and global) using a combination of the GPR, process-based land surface
modeling with NASA’s Land Information System (NASA-LIS), and remote sensing
(RS). We can analyze nonstationarities with this hybrid ML + process-based
modeling approach.
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Figure 1 (above). Location of Ten FluxNet tower sites

Figure 2 (right). Schematic of a FlexNet Tower with 
atmospheric and hydrologic measurement devices
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Figure 3. Results using the GPR as a post processor at the Blodgett (Ca) FluxNet tower site with a direct comparison to the
Ensemble Kalman Filter. The data shown above has been smoothed (two day running average) for clarity. The first year in this
graph is “in-sample”, meaning the GPR was trained during this time, and the Ensemble Kalman Filter functions as intended.
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Figure 5. Time series analysis results of hydrologic nonstationarities across the continental United States. Future
work will include expanding the capability of the hybrid ML + Process based modeling to predict large scale
hydrologic processes assimilating remote sensing data, and will provide a means to analyze hydrologic
nonstationarities in greater detail than current time series methods.

Figure 0. A graphical representation of a one
dimensional Gaussian Process. This figure shows an
ensemble of functions that pass through observations,
with lower variance closer to the observations.

GPR assumes a zero mean prior.
This is an important characteristic
which makes it suitable for this
application the prediction defaults
to the physical model (in our case
Noah-MP) and updated with a
contribution from the GPR only if it
adds value. This is important as
hydrologic conditions often fall
outside of the historical record, i.e.,
major floods and droughts.
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Figure 4. Results using the GPR to update the model state dynamically. These
results are out-of-sample, meaning that the GPR was trained and tested on
separate data sets. This implies that the GPR has sufficiently learned model
structural error to improve soil moisture predictions when no observations are
available.
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