Software

OPTIMIZE USING ROOFLINE AUTOMATION
AND SIMD ANALYSIS TOOLS

Intel Confidential

Loop in Ibm::collisionSompSparallel@28 at collision.cpp:95

Intel® Advisor GUI 330.067s

Vectorized (Body) Total time

AVX512BW_128; 330.067s
&) Program metrics =)
s Self time
Elapsed Time 51.60s ~ GFLOPS 3.14 AVX512DQ_512; AV)$51 2F—51‘2
Instruction Set
Vector Instruction Set AVX512, AVX2, AVX GFLOP Count 161.877 s on-oa
Number of CPU Threads 48 FP Arithmetic Intensity @ 0.12868
, GINTOPS 043 VY Dynamic Instruction Mix Summary
» Memory 28% (7667136000) Bl
v Performance characteristics ¥ Compute 25% (6865344000)
. - » Vector 25% (6815232000) BB
T' T o v » Scalar < 1% (50112000) |
otal time 2.03s o .
Time in 3 ized | 345.29: 38.39 » Mixed 20% (5311872000) @B
ime in 3 vectorized loops .29s. 0 %
Other 27% (7316352000) BB
Time in scalar code 556.74s —— 61.7% ()
V) Vectorization Gain/Efficiency E’ Elapsed time: 51.60s El FILEN@ | Loops And Functions vH All Threads
S B L *®: Refinement Repor
Vectorized Loops Gain/Efficiency ? ~ 2.65x = | Shmmn) % Survey & Roofiine s : -~ — A A e
‘]) @ Performance CPU Time B o Vectorized Loops A
Program Approximate Gain(? 1.63x =1 Function Call Sites and Loops [b Jsoues ST o Type Why No Vectorization? o e eaed
lloop in IbmzcollisionSomp$parallel®26 at collision.cpp:95] | & 1 Possible ineffi... 330.067s M0 330.067sH Vectorized (Body) Avxst2 [530% |2.42x
v OP/S and Bandwidth ° loop in Ibm:collisionompparallel@28 at collision.cpp:81] [1Possible ineffici.. 140.808sB 14080858 Scalar 8 vectorization possible but..
R " €3 Hardware P 5 [loop in Ibmzcolisi 28 at collision.cpp:36] [1Possible ineffici.. 6332250 6332250 Scalar 8 vectorization possible but...
ove OF/S wiaih Haraware Feak
floop in Ibm:collisionompparallel @28 at col r 15.2065) 152065 Vectorized (Body) AVX512 755
> GFLOPS 3.137 0083% outof 3789 (DP)FLOPS T, ;
CoiTx ool et SR lloop in lbr 28 at coll r 3560s| 333.647sH Scalar & inner loop was already ve.
¥ ane (SP) [loop in Ibmcollisionompparallel@28 at collision.cpp:79] [1 Assumed depen.. 0290s] 141.098sB Scalar & vector dependence preve...
> GINTOPS 0.4308 0.021% outof 2046 (Int64) INTOPS - R . B — - T .
0011% outof 4094 (Int32) INTOPS & > | < 2
> CPU <-> Memory [L1+NTS GB/s] 24.38 0.14% outof 17380 GB/s [bytes] Source | Top Down | Code Analytics | Assembly |w |s Why No
> L2 Bandwidth [GB/s] 30.7 051% outof 6049 GBIs [cacheline bytes)
> L3 Bandwidth [GB/s] 28.16 24% outof 1171 GB/s [cacheline bytes] Line Source Total Time % | Loop/Function Time | % Traits |~
> DRAM Bandwidth [GB/s] 30.63 14% outof 224.8 GBIs [cacheline bytes] o tpragma ivdep
95 © forl k = 1; k <= NZ; k++) { 4730s 330.067< —"
p in lbm::coll
® Top time-consuming loops d AVKS1 0at64; UIntéd; UByte data type(
Loop Self Time' To me 9%
[leop in lbm::collisionSompSparallel@28 at collision.cpp:95, 330.0675s 330.0675s 97 //pefine some local values
O[loop in Ibm::collisior allel @28 at collision.cop:81] 140.8077s 140.8077s 98 phin = phi[il[3]Kl; 0.120s
Olioop in lbm:: allel for@22 st stream.cpp:26] 73.18691s 73.18691s 9 phinz = pm:'l’h”"‘
it = 1.0/rho kl;
Olioop in lom::collisionSompSparallel@28 at collision.cop:36 63.32187s 63.32187s 100 rvEnen e 4500¢) A -
101
Olleop in Ibm:initSompSparalleli@52 at init.cpp:88) 32.76916s 32.76916s ana P — Hydrodunamics_(welaciry _nressnre interfacial farcal —-------
Selected (Total Time): 4.730s v

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Typical Vectorization Optimization Workflow

There is no need to recompile or relink the application, but the use of -g is recommended.

In a rush: Collect Survey data and analyze loops iteratively

Looking for detail:
NOTE: Roofline analysis =
1. Collect survey and tripcounts data [Roofline] ?;:L"g:mf‘i'{s;iap -
" Investigate application place within roofline model
" Determine vectorization efficiency and opportunities v (")
for improvement Nvedigie: |
eugate lq—p
2. Collect memory access pattern data -
. Determine data structure optimization needs
3. Collect dependencies ‘m }
. Differentiate between real and assumed issues /

blocking vectorization

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

What is the Roofline Model?

Characterization of your application performance in the context of the hardware

It uses two simple metrics Lopst

= Flop count

Vectorization,
= Bytes transferred Threading

2 Operations

A —

Optimization of

ai — bl -|— Ci X dl Memory Access
>
Arithmetic Intensity
FLOPS/Byte
— A% — Roofline first proposed by University of California at Berkeley:
1 W+3 R - 4 4bytes - 1 6 bytes Roofline: An Insightful Visual Performance Model for Multicore Architectures, 2009

Cache-aware variant proposed by University of Lisbon:
Cache-Aware Roofline Model: Upgrading the Loft, 2013

Copyright © 2019, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

https://people.eecs.berkeley.edu/~kubitron/cs252/handouts/papers/RooflineVyNoYellow.pdf
http://www.inesc-id.pt/ficheiros/publicacoes/9068.pdf

Roofline Model in Intel® Advisor

Intel® Advisor implements a Cache Aware Roofline Model (CARM)
= “Algorithmic”, “Cumulative (L1+L2+LLC+DRAM)" traffic-based
» Invariant for the given code / platform combination

How does it work ?
= Counts every memory movement
* |nstrumentation - Bytes and Flops
= Sampling - Time

Advantage of CARM Disadvantage of CARM

No Hardware counters Only vertical movements !

Affordable overhead (at worst =~10x) Difficult to interpret

Algorithmic (cumulative L1/L2/LLC) How to improve performance ?

C 0 0 e
Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Roofline Chart in Intel® Advisor

kQ tly v | Cores: 48 on 2 socket(s) 9 . | Y Default: FLOAT » i Compare v >

Roof values are —= | I .
3 - —e2""" | [7] Color Roofline zones
measured * A ‘?'ShowoptlmalscaleforeachRooﬂinevnewa =
e g ez " () Show one scale that accommodates all Roofiine views
Roofs Settings
SERE A r Use single-threaded benchmark results to build roofs @
D Ots re p re S e n t I s) ; oo Roof Name Visible Selected Value [
" .. T "
5 R L1 Bandwidth % M [17379.21 |Gssec
pI’OfIled lOOpS L2 Bandwidth] [J (604853 |GBisec
. — L3 Bandwidth % O 1170.9 |GBsec
an d fu n Ct Ions { \age" DRAM Bandwidth % M 22485 |cBisec
SP Vector FMA Peak [V] O 7576.52 |GFLOPS
SP Vector Add Peak [] O 3788.61 |GFLOPS
DP Vector FMA Peak [V| [3788.52 |GFLOPS
H | g h leve l Of | DP Vector Add Peak [V] O 1894.44 |GFLOPS
. . Scalar Add Peak % O 25587 |GFLOPS
customization i [
0.014 i Loop Weight Representation ~ Cancel Defaul
-~ 0.01) 0.1 1
Physical Cores: 48 @ App Threads: 48 ¥ Self Elapsed Time: 7.500s Total Time: 330.067 s 7 Qima Color L

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

TUNING A SMALL EXAMPLE WITH ROOFLINE

Example Code
A Short Walk Through the Process

26 vector<double> X(SIZE);
The example loop runs through an array of 27 Etypedef struct AoS
structures and does some generic math on some 28 {
of its elements, then stores the results into a 29 double a;

. . cpe 30 double b;
vector. It repeats this several times to artificially 1 double padi;
pad the short run time of the simple example. 32 double pad2;

33 } AoS;
34 foS Y[SIZE];
51 = for (int r = 8; r < REPEAT; r++)
52 {
53 = for (int 1 = @; 1 < SIZE; i++)
54 1{
55 X[1i] = ((7.4 * Y[i].a + 14.2) + ¥[i].b * 3.1) * ¥Y[i].a + 42.0;
56 I
57 [}

C 0 0 e
Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Finding the Initial Bottleneck
A Short Walk Through the Process

The loop s initially under ,_. (GFLOPS) R [@ M « x B~ |=
the Scalar Add Peak. The

Survey confirms the loop
is not vectorized.

46.3

[=] Function Call Sites and Loops | Type

40 [loop in main at roofline.cpp:53] | Scalar

The “Why No
Vectorization?” column
reveals why.

r

1.7

0.08 0.7
& vector dependence prevents vectorization Self Elapsed Time: 17.156s Total Time: 17.156 s Arithmetic Intensity (FLOP/Byte)

Why Mo Vectorization?

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Overcoming the Initial Bottleneck
A Short Walk Through the Process

The recommendations tab
elaborates: the dependency is
only assumed.

Site Location Loop-Carried Dependencies | Performance Issues

[+ E [loop in main at roofline.cpp:54] @No dependencies found & 1 Assumed depe...

o Issue: Assumed dependency present

The compiler assumed there is an anti-dependency (Write after
read - WAR) or a true dependency (Read after write - RAW) in the
loop. Improve performance by investigating the assumption and
handling accordingly.

Recommendation: Confirm dependency is real

There is no confirmation that a real (proven) dependency is

present in the loop. To confirm: Run a Dependencies analysis.

Running a Dependencies
analysis confirms that it's false,
and recommends forcing
vectorization with a pragma.

Memory Access Patterns Report | Dependencies Report | ¢ Recommendations

All Advisor-detectable issues: C++| Fordran

o Issue: Assumed dependency present

The compiler assumed there is an anti-dependency (Write after read - WAR) or
a true dependency (Read after write - RAVW) in the loop. Improve performance by
investigating the assumption and handling accordingly.

Recommendation: Enable vectorization

The Dependencies analysis shows there is no real dependency in the loop
for the given workload. Tell the compiler it is safe to vectorize using the

restrict keyword or a directive:

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

The Second Bottleneck
A Short Walk Through the Process

Adding a pragma to force the Performance (GFLOPS) R@O . xB-I=
loop to vectorize successfully 4637
overcomes the Scalar Add Peak.

It is now below L3 Bandwidth.

The compiler is not making the

same algorithmic optimizations, e d
gt 2
so the Al has also changed. - _ppsnd
5@ = for (int r = @; r < REPEAT; r++) [}68 [}I?
i { . SeleIap-)sed Time: 9.233s Total Time: 9.233 s Arithmetic Intensity {FLDWBy’t&}
52 #pragma omp simd
53 = for (int i = @; i < SIZE; i++)
54 {
55 X[i] = ((7.4 * Y[i].a + 14.2) + Y[i].b * 3.1) * Y[i].a + 42.8;
56 }
57 }

C 0 0 e
Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Diagnosing Inefficiency
A Short Walk Through the Process

While the loop is now vectorized, it is 51 functon Cal Steeam oape | VeCOTZEA L0OPS
. . s m . . + uncuon La Ies an oops

inefficient. Inefficient vectorization P | Vector... Efficiency [Gain€... v (ve..
and excessive cache traffic both often | leopinmainatroofine.cpp:sljavx [43% |1.73x 4

result from poor access patterns, which can be confirmed with a MAP analysis.
Site Location Strides Distribution Recommendations

" [loop in main at roofline.cpp:53] 50% / 50% / 0% ¥ 1 Inefficient memory access patterns present

Array of Structures is an inefficient data layout, particularly for vectorization.

SoA B1 B2 B3 B4

AoS B1 B2 B3

Optimization No €

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

A New Data Layout
A Short Walk Through the Process

Changing Y to SoA layout
gins y Performance (GFLOPS) R (@« x B~ =

moved performance up
again. 46.3 -

26 vector<double> X(SIZE);

27 —typedef struct Soi

28 {

29 double a[SIZE];

30 double b[SIZE];

31 double padl[SIZE]; ~

32 double pad2[SIZE]; }},Bf’* B I v

33 1 SoA; GBIF- -

L . J.I'E_E'E",_. -
34 SoA Y; PR LA
1.7 %P:H?f:*

Either the Vector Add Peak) E}S nl?
or L2 Bandwidth could be Self Elapsed Time: 4.250s Total Time: 4.250 s Arithmetic Intensity (FLOP/Byte)

the problem now.

Copyright © 2019, Intel Corporation. All rights reserved. ‘ |nte‘ . 13

*Other names and brands may be claimed as the property of others.

Improving the Instruction Set

A Short Walk Through the Process

Because it's so close to an intersection, it's hard to tell whether the Bandwidth
or Computation roof is the bottleneck. Checking the Recommendations tab
guides us to recompile with a flag for AVX2 vector instructions.

Your current hardware supports the AVX2 instruction set architecture (ISA),
which enables the use of fused multiply-add (FIMA) instructions. Improve
performance by utilizing EMA instructions.
Recommendation: Target the higher ISA
Although static analysis presumes the loop may benefit from FIMA
instructions available with the AVX2 or higher ISA, no FMA instructions
executed for this loop. To fix: Use the following compiler options:

Be =y Loops
E Function Call Sites and Loops’ °
"| Efficiency ‘ Gain E... ‘VL Ve..
4" [loop in main at roofline.cpp:53] | AVX 83% 330x 4 h
Afte Loops

[=] Function Call Sites and Loops

"| Efficiency ‘Gain E.. ‘VL Ve..

100% |4.00x 4 h

4" [loop in main at roofline.cpp:53] | AVX2

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

46.3

1.7

SeleIa;ﬁsed Time: 3.217s Total Time: 3.217 s

o Issue: Potential underutilization of FMA instructions| Performance (GFLOPS)

@ o«

= 2
DP Vector FMA Peak-46.3 GFLOPS--

L - ?
*j_ YecterAdd Peal 23,22 GFLOPS___

-
.-

xp-l=

e ¥

0.08

07
Arithmetic Intensity (FLOP/Byte)

i@ . 14

Assembly Detective Work
A Short Walk Through the Process

The dot is now sitting directly on the Vector Add Peak, so it is meeting but not
exceeding the machine’s vector capabilities. The next roof is the FMA peak. The
Assembly tab shows that the loop is making good use of FMAs, too.

Source | Top Down | Code Analytics || Assembly | ¢ Recommendations | @ Why N¢

The Code Analytics tab reveals an

unexpectedly high percentage of " Address | Line | pu— |
scalar compute instructions. 0x140001124 Block 1: 3040000000 LOOp B
[L) @ 0x140001124 55 vmovupd ymmd, ymmword ptr [r8+rcx®8+0x151e0] ody
Static Instruction Mix Summary ™~
The on l-y ¥ Dynamic Instruction Mix Summary= 0x14000712¢ 55 vmovdga ymms, ymm1
l_ th ¥ Memory 33% (9120000000, 3) Ox140001132 55 vfmadd213pd ymmb, ymmd4, ymm2
SCalar ma » Vector 33% (9120000000, 3) @ & 0x140001137 55 vifmadd231pd ymm3, ymmo0, ymmword ptr [r8+rcx*8+0x177e0]
¥ Compute 33% (9120000000, 3
op present 3 Vecfnr 22=:-Z Esuauuunuau, 2} (] gxligggm; :: wmaddzﬁpd ym":f’ {mm’ ymf :
iS in the » Scalar 1% (3040000000, 1) ® re vmovupd ymmword ptr [rax+rcx®8], ymm
¥ Mixed 11% (3040000000, 1) Ox14000114b 53 add rcx, Oxd LO
loop control. w Vector 11% (3040000000, 1) @ 0x14000114f 53 cmp rex, Ox4cO Op Cont,,ol
Other 22%. (6080000000, 2) D 0x140001156 53 Jb 0x140001124 <Block 1=

Copyright © 2019, Intel Corporation. All rights reserved. ‘ |nte‘ .)

*Other names and brands may be claimed as the property of others.

One More Optimization
A Short Walk Through the Process

: : : Perf GFLOPS JCIRR S -
Scalar instructions in the loop o e e
control are slowing the loop down. ' P Vector FIA Peak-46 3 GFLOPS -

2 #@ be vectorAdd Peal 23.22GFLOPS

L

Unrolling a loop duplicates its body
multiple times per iteration, so gt P2 gl N
control makes up proportionately o

T 4
less of the loop.
— ‘l_?_
™ Static Instruction Mix Summary™~ | e |
¥ Dynamic Instruction Mix Summary'~ 0.08 0.7
¥ Memory 47% (9120000000, 24) Self Elapsed Time: 2406 s Total Time: 2406 s Arithmetic Intensity (FLOP/Byte)
» Vector 47% (9120000000, 24) DD
¥ Compute 33% Es:lsunnnnuu, 17} o2 #pragma unroll(8)
» Vector 31% (6080000000, 16) (D o2 #pragma omp simd
» Scalar 2% (380000000, 1) | 54 - for (int 1 = @; 1 < SIZE; i++)
¥ Mixed ! 16% (3040000000, 8) 55 {
I—Vectnr 15% [304{]0““000,3]. 56 X[l] = ((?.4 * Y.EI[_‘II_:I + 14.2) + Y.b[l] * 3.1) * Y.El[i] + 42.9;
Other 4% (760000000, 2) § 57 h

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Recap

A Short Walk Through the Process

Performance (GFLOPS) R ([@ ™ « xB~-|l=

Original scalar loop.

46.3 -

9.233s

Vectorized with a pragma.

4.250s
Switched from AoS to SoA.

3.217s
Compiled for AVX2.

1.7

Unrolled with a pragma. 0.08 0.7
Arithmetic Intensity (FLOP/Byte)

Copyright © 2019, Intel Corporation. All rights reserved. ‘ |nte‘ . 17

*Other names and brands may be claimed as the property of others.

INTEGRATED ROOFLINE

Beyond CARM: Integrated Roofline

New capability in Intel® Advisor: use simulation based method to estimate
specific traffic across memory hierarchies.

= Record load/store instructions
= Use knowledge of processor cache structure and size

* Produce estimates of traffic generated at each level by individuals

loops/functions
Data transfer between levels

CARM DRAM

Cache level in Adwsor

registers

0) 0) e
Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Integrated Roofline Representation

kA Q eIy v | Cores: 48 on 2 socket(s) o, Y FLOAT; No Callstacks; CARM (L1 + NTS); DRAM; Loads+Stores ~ ‘I* Compare v =
10000 4 £ Operations
= e 2
3 ® FLOAT (O INT () INT+FLOAT DP Vector FMA Peak: 3764 95 GFLOPS.,
Calistacks ‘,B"‘l,,., FLO
.] With Calistacks @ v Choose
Memory Level l l
M carm(L1+NTs) [JL2 [J3 Moramw | Seak 3r Add Peak 25572 GFLOPS_ | memo y eve
Memory Operation Type
100 4
_) Loads () Stores (@) Loads+Stores
a2 5 Default [Apply] | Cancel
10 R e ;
A BT [loop in Ibm::collisionompparallel@28 at collision.cpp:95]
> = ° °® Vectorized (Body) AVXS512; processes Float32; Float64; Uint64; UByte data type(s)
® 0 Performance: 13.91 GFLOPS
CARM (L1 + NTS) Loads+Stores Arithmetic Intensity: 0.22 FLOP/Byte
1 Self Time: 364.723 s 1
Self Elapsed Time: 8.530 s H Over for detal ls
Total Time: 364.723 s
Self GB/s: 62.1291
Total GB/s: 62.1291
0.1- e o
FLOP/Byte (Arthmatic Intensiy)
0.01 0.1 1 10
Physical Cores: 48 © App Threads: 48 @ Self Elapsed Time: 8.530s Total Time: 364.723 s

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

New and improved summary

(v) Program metrics

Elapsed Time 154.92s
Vector Instruction Set AVXE12, AVXZ, AVX, SSE2, S5E
Number of CPU Threads 1

INT+FLOAT Giga OPS 11.89
GFLOPS 10.16
GINTOPS 1.72

Effective Program Characteristics Utilization @Hardware Peak
GFLOPS 10.16 10% outof 100.1 (DP) FLOPS
201.7 (SP) FLOPS
GINTOPS 1723 32% outof 53.94 (Int64) INTOPS

CPU <-> Memory [L1+NTS GB/s] 34.71 1.2e+3% out of

_/ Performance characteristics

106.2 (Int32) INTOPS
450.6 GB/s [bytes]

Metrics Total

Total CPU time 15455 s 1 00%
Time in 3 vectorized loops 142.89s 92.5%
Time in scalar code 11665 B 7.5%

(\) Vectorization Gain/Efficiency

Vectorized Loops Gaim‘ET‘fic_ienC\fE' R3.37x
Program Approximate Gain® 3.19x

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

[4%%

Roofline compare

| " 6 Compared Results v “I* 6 Compared Results “I* 6 Compared Results

2 Filter In Selection T -
Filter Out Selection et
Clear Filters e _pmm_ _ ___ integer Scal
lu 240

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Legal Disclaimer & Optimization Notice

Performance results are based on testing as of 2/22/2019 and may not reflect all publicly available security updates. See configuration disclosure for details.
No product can be absolutely secure.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors
may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVERAND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FORA PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Copyright © 2019, Intel Corporation. All rights reserved. Intel, the Intel logo, Pentium, Xeon, Core, VTune, OpenVINO, Cilk, are trademarks of Intel Corporation
or its subsidiaries in the U.S. and other countries.

Intel’'s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the
applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

Software

