Due to the lapse in federal government funding, NASA is not updating this website. We sincerely regret this inconvenience.
Compute Average of Cloud Cover

Download the Jupyter Notebook file here
# Compute Average of Cloud Cover
import cwt, os
class TestWorkflow:
plotter = cwt.initialize()
host ="https://edas.nccs.nasa.gov/wps/cwt"
wps = cwt.WPS( host,
log=True,log_file=os.path.expanduser("~/esgf_api.log"), verify=False )
def spatial_ave( self ):
# Set the domain to be the continental United States, from 1980 to 2016
# domain_data = { 'id': 'd0', 'lat': {'start':23.7,'end':49.2,'crs':'values'},
# 'lon': {'start':-125, 'end':-70.3, 'crs':'values'},
# 'time':{'start':'1980-01-01T00:00:00','end':'2016-12-31T23:00:00', 'crs':'timestamps'}}
# Set the domain to the ABoVE Study Domain, from 1980 to 2016
domain_data = { 'id': 'd0', 'lat': {'start':-90, 'end':90,'crs':'values'},
'lon': {'start':0, 'end':360, 'crs':'values'},
'time':{'start':'1980-01-01T00:00:00', 'end':'2016-12-31T23:00:00', 'crs':'timestamps'}}
d0 = cwt.Domain.from_dict(domain_data)
# Set the input data to be monthly MERRA data (variable clt)
inputs = cwt.Variable("collection://cip_merra_mth", "clt",domain="d0" )
# Set the operation to be "average", operating over the time axis
op_data = { 'name': "xarray.ave", 'axes': "t" }
op = cwt.Process.from_dict( op_data )
op.set_inputs( inputs )
self.wps.execute( op, domains=[d0], async=True )
dataPaths = self.wps.download_result(op)
# Plot average cloud cover over the spatial range plot
for dataPath in dataPaths:
self.plotter.mpl_spaceplot(dataPath)
executor = TestWorkflow()
executor.spatial_ave()
import cwt, os
class TestWorkflow:
plotter = cwt.initialize()
host ="https://edas.nccs.nasa.gov/wps/cwt"
wps = cwt.WPS( host,
log=True,log_file=os.path.expanduser("~/esgf_api.log"), verify=False )
def spatial_ave( self ):
# Set the domain to be the continental United States, from 1980 to 2016
# domain_data = { 'id': 'd0', 'lat': {'start':23.7,'end':49.2,'crs':'values'},
# 'lon': {'start':-125, 'end':-70.3, 'crs':'values'},
# 'time':{'start':'1980-01-01T00:00:00','end':'2016-12-31T23:00:00', 'crs':'timestamps'}}
# Set the domain to the ABoVE Study Domain, from 1980 to 2016
domain_data = { 'id': 'd0', 'lat': {'start':-90, 'end':90,'crs':'values'},
'lon': {'start':0, 'end':360, 'crs':'values'},
'time':{'start':'1980-01-01T00:00:00', 'end':'2016-12-31T23:00:00', 'crs':'timestamps'}}
d0 = cwt.Domain.from_dict(domain_data)
# Set the input data to be monthly MERRA data (variable clt)
inputs = cwt.Variable("collection://cip_merra_mth", "clt",domain="d0" )
# Set the operation to be "average", operating over the time axis
op_data = { 'name': "xarray.ave", 'axes': "t" }
op = cwt.Process.from_dict( op_data )
op.set_inputs( inputs )
self.wps.execute( op, domains=[d0], async=True )
dataPaths = self.wps.download_result(op)
# Plot average cloud cover over the spatial range plot
for dataPath in dataPaths:
self.plotter.mpl_spaceplot(dataPath)
executor = TestWorkflow()
executor.spatial_ave()


